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Abstract. Inefficient operation and deterioration of machinery leads to increased costs and energy consumption.
Here we describe a method for disentangling operator inefficiency from the inefficiency of their equipment by building a
hierarchical Bayesian model to model the fuel consumption of each operation.
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Introduction. The goal of this paper is to detect and attribute increased fuel consumption in an
industrial process involving a set of machines, grouped by model, and a set of operators, which
operate the machinery. Each operation involves a single piece of machinery and a single operator but
may consist of multiple sub-operations which have different fuel consumption dynamics. The fuel
consumption is measured on a per-operation basis, meaning that we do not have fuel consumption
measurements for individual sub-operations. We assume that each set of machines used by a given
operator and vice versa is sufficiently diverse to be able to draw conclusions about the overall
(marginal) efficiency of that operator/machine.

As a baseline one might consider linear and log-linear models that predict the fuel
consumption from operation duration, operator id, machine id and model id (encoded using dummy
variables). The parameters corresponding to operators and machines can then be reinterpreted as
absolute inefficiencies. Unfortunately, linear models only allow additive inefficiency, while log-
linear models require a log-transform of fuel consumption. Both restrictions are sub-optimal since
they do not accurately reflect the dynamics of fuel consumption: operation inefficiency should be
multiplicative, but the fuel consumption should be almost linear in operation duration. Moreover,
such approaches do not allow us to incorporate clustering by model and are unlikely to produce
interpretable results for quantities such as the ideal fuel consumption for a given operation.
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We propose using non-linear hierarchical Bayesian models to model the dynamics of fuel
consumption. Unlike basic frequentist methods, like lasso regression [1], Bayesian hierarchical
modeling allows us to express arbitrary physical processes involved in the industrial process and infer
their latent parameters, which can then be used to perform comparisons with the machinery’s
reference documentation.

The dataset. Our proprietary dataset consists of approximately 700000 rows with 128
operators and 21 machines, grouped into 3 machine models. The dataset has many outliers, exhibits
multi-modality, and likely suffers from dataset shift. Moreover, we can’t distinguish between multiple
sub-operation subtypes within the dataset: there are multiple tasks involving the same sub-operations
which result in slightly different fuel consumption.

Our model. For each machine model and each sub-operation type, we introduce an ideal fuel
consumption coefficient which determines the minimal fuel consumption per unit of time that can be
achieved with a perfectly maintained machine and a perfect operator. For each machine and operator,
we introduce an inefficiency coefficient, which, when added to 1, acts as a multiplier for a sub-
operation’s ideal fuel usage. The inefficiency is either taken into account or ignored depending on the
nature of the sub-operation, but we expect at least one sub-operation type to include both machine
and operator inefficiency. The expected fuel consumption for an operation is declared to be the sum
of expected fuel consumption for sub-operations, which may be modeled as non-linear functions of
both latent and observed parameters. We then assume that the actual fuel consumption is sampled
from a log-normal distribution located at the expected fuel consumption. The scale of the log-normal
distribution is controlled by a global scale parameter . The general formula for the fuel consumption
@; during operation i for m subtasks given vectors of measurements x; ; and physical models f;(x; s)
for all subtasks s, as well as the operator’s and vehicle’s inefficiency coefficients 6,, and 6,,., may
be described as follows:

m
~ dop,s
Qi = Z(l + gop) y (1 + ch)qmc’sfs(xi,s);
i=1
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Kernel trick. To reduce the heteroskedasticity caused by the presence of multiple operation
sub-types which can’t be distinguished directly, we introduce a fuel consumption adjustment
coefficient by, (x; s qur), Which depends on the duration of a specific sub-task and acts as an additional
non-linearity inside the physical model. To apply the kernel trick, we associate fixed-length weight,
center and scale vectors w,,, v,,, and y,,, with each machine model m, and calculate the coefficient
as a dot product of the weight vector with a vector of RBF kernels with the corresponding centers and
scales. To ensure that different MCMC chains converge to the same posterior distribution, we restrict
the vector of centers to be a monotonically increasing sequence of numbers, which is acceptable in
our case because the kernel trick is applied to a 1-dimensional space (representing a sub-operation’s
duration). The monotonicity is achieved by reparametrizing the vector of centers to be a cumulative

sum of positive offsets f3,,,, which define how far each following center is from the previous one:
2
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Priors. For ideal fuel consumption, we use a fixed truncated normal prior with fixed
parameters determined from domain experience. For other parameters of the physical model, we also
use normal and truncated normal distributions with weakly-informative hyperpriors. For inefficiency
coefficients, we use half-normal priors with a weakly-informative (Half-Cauchy(5)) hyperprior for
each group (i.e. two hyperpriors, one for operators and one for machines). For the observation noise
scale parameter, we also use a weakly-informative (Half-Cauchy(5)) hyperprior. For the kernel trick’s
weights and center offsets, we use Half-Normal(1) priors. For the kernel scales, we use a truncated
normal distribution with a unit mean and scale.

Parametrization. Despite the relatively large size of the dataset, we use non-centered
parametrizations for all truncated normal and half-normal distributions. To sample from a truncated
normal distribution TV (u, o2,1), where [ is the minimum value for numbers sampled from the
distribution, we multiply the samples from a truncated normal distribution 7V (0, 1,1") by the desired
scale o and add the desired mean u. The value of I’ corresponding to the desired minimum value [ is
given by

[ = g1 ll _ <u s _PN(0,1)((l — /o) >l
1—cdfyon(U—w/o))]

Inference. Our implementation is based on numpyro[2]. We fit the model using the No-U-
Turn Sampler (NUTS) [3], an adaptive sampler based on Hamiltonian Monte Carlo. We set the target
acceptance probability to 0.99 to make sampling more robust to the high curvature introduced by the
non-linear physical model. We achieve convergence despite the complex geometry of the typical set
(Gelman-Rubin statistic = 1 + 1e-2 for all trained models).

Preprocessing. To speed up convergence, we normalize the operation durations, fuel
consumption and other positive observations to have a mean of 1.

Evaluation. To validate whether our model is capable of predicting the fuel usage for
individual operations, we perform a 1%-t0-99% stratified train-test split and compare the mean
absolute error of our model to four 5-fold cross-validated lasso regression models with 3rd degree
polynomial features: two linear models, two log-linear models, two models with categorical variables
and two models without categorical variables. We also compare our hierarchical model to a model
obtained by removing the inefficiency coefficients from the main model. The small size of the training
set is due to the computational complexity of training the Bayesian model.

To validate whether the model is capable of determining the inefficiencies of various parties,
we build an auxiliary dataset by randomly selecting 10 operators and 5 machines and artificially
adding inefficiencies to their operations by multiplying fuel usage by a per-operator/per-machine
random number which we call jitter. We then train two models: one on a 5% subsample of the original
dataset, and one on the auxiliary dataset constructed from the subsample. The relative increase in fuel
consumption between datasets can then be derived from the physical model’s definition and compared
to the random jitter applied during the creation of the auxiliary dataset.

Results on the prediction task. Our model has the largest coefficient of determination (R?) and
the lowest mean average error (MAE) on the hold-out set. Table 1 holds the results of an ablation
study performed on a 1%-t0-99% split of the dataset. For all Bayesian models, we ran NUTS for 1000
iterations, the first 500 of which were used for adaptation.
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Table 1: — Prediction error statistics on the hold-out set.

Model MAE R?
Linear without categorical 0.128 0.641
Linear with categorical 0.128 0.641
Log-linear without categorical 0.129 0.624
Log-linear with categorical 0.129 0.625
Bayesian without inefficiencies 0.119 0.643
Bayesian 0.119 0.655
Bayesian with a kernel trick 0.116 0.661

This demonstrates that linear models do not benefit from operator/machine id information,
while introducing inefficiency coefficients into the Bayesian model noticeably reduces the
unexplained variance.

Linear model residuals

Bayesian model residuals

Normalized fuel consumption

Figure 1: — Residual plots for the best linear model and the best Bayesian model

Linear models and basic Bayesian models exhibit major heteroskedasticity, while the best
Bayesian model is relatively homoscedastic.

Results on the synthetic inefficiency detection task. To fit the Bayesian model to both the
original and the auxiliary datasets, we ran NUTS for 2000 iterations, the first 1500 of which were
used for adaptation. To recover the jitter multiplier y from the original predicted inefficiency 68,,;4
and the predicted inefficiency on the jittered dataset 68;;;;, we use the following relationships:
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Figure 2: — A comparison of the predicted relative machine inefficiency jitter with the
actual jitter used to construct the auxiliary dataset. The box plot summarizes the posterior
distribution of the jitter multiplier, while the dots represent the actual fuel usage jitter
multipliers. The closer the median line is to the blue dot, the better.
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Figure 3: — A comparison of the predicted relative operator inefficiency jitter with the
actual jitter used to construct the auxiliary dataset. The box plot summarizes the posterior
distribution of the jitter multiplier, while the dots represent the actual fuel usage jitter
multipliers. The closer the median line is to the blue dot, the better.
Our model successfully identifies the inefficiencies caused by the machines. For operators,
the estimates are significantly more conservative, but this may be explained by the model’s low
confidence in its predictions for operators who are underrepresented in the sample. Nevertheless, the
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estimates for operators which were not affected during the creation of the modified dataset are near
zero, while the estimates for operators which were affected are almost always significantly larger,
and for most operators, the actual jitter is within the inter-quartile range. This indicates that the model
gives conservative estimates, which is ethically desirable.

Conclusion. The proposed Bayesian model is superior to the proposed baselines in multiple
ways. Firstly, it provides credible intervals for parameters describing the inefficiencies of operators
and machines, allowing us to judge whether it is reasonable and fair to make judgements from the
inferred parameters. Secondly, it allows us to integrate non-linear physical relationships into our
model, giving us interpretable parameters, which can be inspected by a domain expert to determine
whether the obtained estimates are reasonable. Thirdly, it outperforms the baselines on challenging
predictive power benchmarks and is capable of dealing with various problems present within the
dataset, such as multimodality and the presence of outliers. Our experiments demonstrate that the
proposed model detects artificially added inefficiencies and that it is not overconfident about its
predictions.
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AnHotanmsi. HeHamnexamiee cocTosiHue 000py0BaHue U ero Hea(eKTHBHOE NCI0JIB30BAHUE TPUBOIUT
K 3aBBIIIEHOMY HOTPEOJEHUIO JHEPrOpecypCcOB M MOBBINICHUIO 3aTpaT. B JaHHOW crarbe ONMUCHIBAETCS METO[
pacryTbiBaHuA HEI(PPEKTHBHOCTEH OIEepaTopoB 0O0OpyHAOBaHUSA OT Hed(pdeKTHBHOCTEH camMoro oO0OpYyHZOBaHWUS,
OCHOBBIBAIOIIMICS Ha uepapxuueckoit baliecoBckoil Moienu, MoAEIUpPYIOIIEeH UCTIOIb30BaHKE TOILINBA.

KiroueBble cioBa: Hepapxuueckue baiiecoBckue mognenu, baiiecoBckoe MopaenupoBaHue, MeTonbl
Mounre-Kapno, Cratucruueckoe MonaenupoBaHue.
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