2015 № 2 (88)

УДК 621.039.4

РАДИОМЕТР СУММАРНОЙ АЛЬФА- И СУММАРНОЙ БЕТА-АКТИВНОСТИ НА БАЗЕ СЕРИЙНО ВЫПУСКАЕМЫХ БЛОКОВ ДЕТЕКТИРОВАНИЯ ПРОИЗВОДСТВА УП «АТОМТЕХ»

Д.В. ГОРШКОВ, В.А. КОЖЕМЯКИН

Научно-производственное унитарное предприятие «ATOMTEX», Гикало, 5, Минск, 220005, Беларусь

Поступила в редакцию 4 февраля 2015

В практике радиометрических измерений при проведении радиационного контроля актуальной задачей является определение суммарной альфа- и суммарной бета-активности различных проб и счетных образцов.

Альфа-бета-радиометр РКС-АТ1319 предназначен для одновременного или раздельного измерения суммарной альфа-активности и суммарной бета-активности аэрозольных аналитических фильтров типа АФА-РМП и АФА-РСП, а также для радиометрии мазков. Радиометр позволяет проводить измерения суммарной бета-активности «толстослойных» счетных образцов, приготовленных из вещества пробы (например, путем выпаривания, либо любым другим методом, обеспечивающим получение «толстого» образца), а также измерения активности альфа-источников типа 1П9, 2П9, 3П9 и бета-источников типа 1С0, 2С0, 3С0.

Радиометр представляет собой функционально законченный прибор, состоящий из блоков детектирования, устройства обработки информации, блока защиты и устройства размещения образцов, смонтированных в едином корпусе.

Внешний вид альфа-бета-радиометра РКС-АТ1319

Принцип действия радиометра основан на использовании интеллектуальных сцинтилляционных блоков детектирования альфа- и бета-излучения. Для регистрации альфа-излучения исследуемых образцов используется блок детектирования БДПА-01, выполненный на основе сцинтиллятора ZnS(Ag), для регистрации бета-излучения — блок детектирования БДПБ-01, выполненный на основе пластмассового сцинтиллятора. Площадь входного окна каждого из блоков детектирования составляет 28 см². Данные блоки серийно выпускаются УП «АТОМТЕХ».

Для уменьшения влияния внешнего фона используется свинцовая защита толщиной от 1 до 3 см. Между входными окнами блоков детектирования установлено устройство размещения образцов с поворотной платформой.

Устройство обработки информации выполнено на базе встроенного промышленного панельного компьютера. Управление радиометром осуществляется посредством сенсорного цветного ТFТ-дисплея с диагональю 7" и разрешением 800×480. Результаты измерений также выводятся на дисплей.

Программное обеспечение радиометра позволяет выполнять следующие основные функции:

- выполнять подготовку прибора к работе, включая проверку параметров от контрольного источника и, при необходимости, подстройку блоков детектирования;
- проводить измерение и сохранение в памяти радиометра фоновых спектров, которые в дальнейшем используются при расчете активности;
 - проводить измерения параметров исследуемых образцов в различных геометриях;
- производить выбор измеряемой величины (скорость счета, активность, объемная активность, удельная активность и т.д.);
- сохранять результаты измерения в базе данных с возможностью дальнейшей сортировки и передачи на внешний персональный компьютер, а также распечатывать результаты измерений.

Помимо этого предусмотрена возможность подключения радиометра в локальную сеть, и возможность подключения к прибору через USB-разъем внешних устройств, таких как принтер. Кроме заводских калибровок для геометрий измерения «Фильтр», «Мазок», «Источник», «Проба» имеется возможность использования пользовательских калибровок. К тому же есть возможность исполнения прибора в вариантах альфа-радиометра и бетарадиометра. Полученные на данный момент метрологические характеристики разрабатываемого радиометра представлены в таблице.

Метрологические характеристики разрабатываемого радиометра

Наименования технических показателей	Значение показателей
Чувствительность к α-излучению (²³⁹ Pu)	0,16 Бк ⁻¹ ×c ⁻¹
Чувствительность к β -излучению (90 Sr- 90 Y)	0,25 Бк ⁻¹ ×c ⁻¹
Эффективность регистрации α-частиц (²³⁹ Pu)	25 %
Эффективность регистрации β-частиц (90Sr-90Y)	60 %
Диапазон энергий регистрируемого α-излучения	3 – 7 МэВ
Диапазон энергий регистрируемого β-излучения	155 кэB – 3,5 MэB
Диапазон измеряемых скоростей счета (α-канал)	$0 - 10000 \mathrm{c}^{-1}$
Диапазон измеряемых скоростей счета (β-канал)	$0 - 100000 \mathrm{c}^{-1}$
Диапазон измеряемых активностей (α-канал)	0,01 – 3000 Бк
Диапазон измеряемых активностей (β-канал)	0,1 – 10000 Бк
Фоновая скорость счета (α-канал)	Не более 0,001 с ⁻¹
Фоновая скорость счета (β-канал)	Не более 0,80 с ⁻¹
МИА за 1 час для α-канала (²³⁹ Pu)	0,02 Бк
МИА за 1 час для β-канала (⁹⁰ Sr- ⁹⁰ Y)	0,28 Бк
Диапазон рабочих температур	от -20 до 50 °C
Степень защищенности	IP 50 (для панели оператора IP 66)
Габаритные размеры	250×250×479 мм
Macca	38 кг