
ISSN 1054-6618, Pattern Recognition and Image Analysis, 2020, Vol. 30, No. 2, pp. 170–173. © Pleiades Publishing, Ltd., 2020.

Hyperparameters of Multilayer Perceptron 

with Normal Distributed Weights

Y. Karakia,* and N. Ivanovb,**
a Department of Computer Science, Faculty of Sciences and Fine Arts, 

Arts Sciences and Technology University in Lebanon, Cola, Beirut, 14-6495 Lebanon
b Department of Computing Machinery, Faculty of Computing Systems and Networks,

Belarusian State University of Informatics and Radioelectronics, Minsk, 220013 Republic of Belarus

* e-mail: youmna_karaki@yahoo.com

** e-mail: ivanovnn@gmail.com

Abstract—Multilayer Perceptrons, Recurrent neural networks, Convolutional networks, and others types of
neural networks are widespread nowadays. Neural Networks have hyperparameters like number of hidden
layers, number of units for each hidden layer, learning rate, and activation function. Bayesian Optimization
is one of the methods used for tuning hyperparameters. Usually this technique treats values of neurons in net-
work as stochastic Gaussian processes. This article reports experimental results on multivariate normality test
and proves that the neuron vectors are considerably far from Gaussian distribution.
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INTRODUCTION

Neural Network has been a booming field recently
as many industries have been disrupted by its influx. In
the last few years, Neural Networks have created a sig-
nificant impact in many areas such as autonomous
driving, pattern recognition, big data classification,
and computer vision.

In deep learning projects, tuning hyperparameters
is the key to reduce computing time providing reason-
able error. Hyperparameters include the number of
network layers, nodes in each layer, the activation
function, and other characteristics for specific neural
networks. In general, hyperparameters determine the
structure of neural network and how it is trained. The
problem of hyperparameters optimization arose
together with first perceptron; for instance, a mono-
graph was published in 1996 [1]. There are several
common approaches for statement formalization; in
fact they do not provide a priori error. Mathematical
model for both deterministic and stochastic nonlinear
optimization problem with constrains may be applied
to hyperparameters estimation. The formal model is
formulated as [2]:

(1)

where X is a feasible set of hyperparameters, D is a
learning set, f(x, D)) is the estimated performance of x
over set D.
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Mathematical model (1) is abstract, useless, and
doesn’t ensure solution for real problem. Unfortu-
nately, this optimization problem includes implicit
function f(x, D) and cannot be solved with ordinary
methods.

HYPERPARAMETERS OPTIMIZATION

Contemporary methods for solving hyperparame-
ters optimization problem are grid search, random
search, gradient approach, evolutionary algorithms,
and Bayesian optimization. Grid search [3] is naïve
method checking all feasible arguments on selected
grid. Objective function is estimated for each sample
and optimal value is selected. If several kinds of
parameters are taken into consideration, then the grid
is a set of multidimensional vectors. Computational
complexity of grid search depends exponentially upon
dimension of vectors.

Random search [4, 5] for estimation of neural net-
work hyperparameters is an extension of the grid
search. A statistical distribution for argument x from
formula (1) has to be estimated. In comparison with
grid search, the random search has much better con-
vergence due to focusing upon more important hyper-
parameters. But for the random search, preliminary
statistical investigation for hyperparameters must be
implemented.

Evolutionary algorithms are optimization methods
that originated from genetic science. They exploit two
main genetic concepts, namely crossing and mutation.
Evolutionary algorithm, on the base of two (or more)
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feasible solutions of the problem under consideration,
constructs new solution improving target function.
First, these two solutions are crossing, and second,
this new solution is mutated. The process of generating
new solution is similar to operation of crossover and
mutation in genetics. Evolutionary hyperparameter
search follows the biological concept. Initial set that
named initial population contains neural networks
with random generated hyperparameters [6, 7]. Algo-
rithm checks fitness of each element of population and
replaces the worst elements with new ones. New sam-
ple is NN generated through evaluation; that is cross-
over and mutation operations of arguments. These
arguments are the components of vector x from model
(1), e.g. number of layers and number of nodes in each
layer. Target function is a percentage of correct classi-
fied samples. The algorithm terminates when the
learning process of new sample does not yield
improvement with preset error.

Bayesian optimization [8, 9] is applied to find
parameters of derivative-free stochastic function. It
consists of two main components: an algorithm for
stochastic parameters, usually Gaussian regression;
and an acquisition function for finding argument for
additional sample that has to improve prediction based
on regression. Usual mathematical model of the

method is Gaussian process with posterior Bayesian
probability formula estimating expecting values for f(x,
D) in model (1) at a desired argument x. When a new
point is observed, the parameters of posterior distribu-
tion are refreshed. An acquisition function is used for
measuring the value that would be generated by evalu-
ation of the objective function at a new point x, taking
into consideration the current distribution over f(x, D).
Figure 1 illustrates some kind of confidence intervals
for values f(x, D) at any point x. Argument x consists of
NN hyperparameters, axe y may depict percentage of
correct recognized instances by NN. Points xi are ones
for which objective function of the problem (1) was
obtained with experiment, an interval estimating pro-
cedure is applied for function y at other points x.
Extrapolated confidence interval for f(x, D) values
where x > x4 provides predicting result for NN perfor-
mance.

TEST FOR VECTORS ON NEURAL
NETWORK LAYERS

It is well known that normal distribution is wide-
spread in engineering data. Normal distribution and
Gaussian stochastic process had been scrutinized in
XIX century. Gaussian density function has just two
parameters. Normal distributed dataset is investigated
with deep elaborated mathematical theory. The aim of
this experiment is testing vectors on NN layers on
multivariate normality.

Recognized repository of University of California
Irvine [10] was selected for our experiment with deep
learning perceptron. Namely 10 classification prob-
lems were under investigation. Nonnumeric coding of
attributes was changed with nonnegative numbers.
Omitted attribute parameters were interpolated. Data-
set list is available in Table 1.

Let n be number of NN layers, L1 is the input layer,
Ln the output one, and L2, …, Ln – 1 are the hidden lay-
ers. The question that imposes itself: Are the vectors of
learning dataset on hidden layers normal distributed?

If the answer to this question is positive, then trans-
formation of initial input set of vectors into output
resulting vector of NN can be fully defined as discrete
stochastic Gaussian process realized by sequence of
normal vectors:

(2)

Initial data for NN may consist of real, integer, cat-
egorical values that definitely cannot have normal dis-
tribution. Following layers of NN are a mixture of
these values. Distributions of vectors xi were compared
with Gaussian ones. Henze multivariate normality test
with confidence level 0.95 was applied. None of data-
sets successfully passed test on Gaussian distribution.
To sum it up, multilayer perceptron didn’t fit Gauss-
ian distribution at any of the hidden layers.
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Fig. 1. Estimating an objective function f(x, D) with a
1-dimensional continuous parameter x.
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Table 1. Datasets for computing experiment

No. Name
No. 

Instances

No. 

Attributes

No. 

Classes

1 Adult 4884 14 8

2 Arrhythmia 452 9 5

3 Dermatology 366 33 7

4 Glass identification 214 10 7

5 Hepatitis 155 19 5

6 Lymphography 148 18 6

7 Student performance

(3 targets)

649 33 8

8 Wine 178 13 5
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In statistics, normality tests are used to verify
whether data sets can be considered as Gaussian dis-
tributed samples. The tests are a base for a model con-
struction, and can be explained by several ways,
depending on the problem of interest. Pearson chi-
square or Kolmogorov–Smirnov tests are exploited
for single dimension Gaussian distribution validity.
These tests are hardly modified for multidimensional
variate testing. It seems that a simple normality test for
random vector may be accomplished by linearly trans-
forming normal vector into independent one-dimen-
sional random values. Then independent values have
to be tested by standard procedures. However, this
transformation can distort initial vector; and the result
may be false.

Multivariate normality statistical tests had been
developed in the last four decades [11–14]. L. Baring-
haus and N. Henze [15] proposed to estimate the dif-
ference between the sample characteristic function
and the theoretical one, which is Gaussian. In contra-
diction with one dimensional, K.V. Mardia [11, 12]
tests the multivariate normality by estimating two ran-
dom characteristics of given sample, namely kurtosis
and skewness. Verification tables for these parameters
were developed [12]. The statistical test is a function
with cumbersome expression containing integration
over probabilistic measure. For estimation of this sta-
tistic, Monte-Carlo method is exploited.

Learning procedure with feedback error correction
had been implemented for each sample; then neural
networks with tuned weights were applied to them. A
vector set on layers corresponding to each dataset was
verified. Standard value 0.05 of significance level was
exploited. The verification test produced two statis-
tics, namely kurtosis and skewness measures to check
if vector set complies with Gaussian distribution. In
fact, it occurs that for all hidden layers, no vector set
fits Gaussian distribution.

CONCLUSION AND FUTURE WORK

The carried out experiment suggests that the vec-
tors corresponding to neurons of multilayer percep-
tron networks hardly fit to such simple structure as
Gaussian multivariate normality.

For hyperparameter optimization problem, values
of vectors corresponding to layers have specific distri-
butions; their probability density function depends on
input dataset and neural network design as well. Pre-
dicting hyperparameter values of neural network with
Bayesian optimization method may be exploited, but
keeping in mind possible discrepancy.
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