«ИФОРМАЦИОННЫЕ РАДИОСИСТЕМЫ И РАДИОТЕХНОЛОГИИ **2020**» Республиканская научно-практическая конференция, 28-29 октября 2020 г., Минск, Республика Беларусь

УДК 621.396.677.83

КОМПЕНСАЦИЯ КУБИЧЕСКОЙ СОСТАВЛЯЮЩЕЙ ФАЗОВОГО РАСПРЕДЕЛЕНИЯ ПРИ СМЕЩЕНИИ ОБЛУЧАТЕЛЯ В ЗЕРКАЛЬНОЙ АНТЕННЕ ПУТЕМ ВВЕДЕНИЯ ЗАМЕДЛЯЮЩЕЙ ЛИНЗЫ

ШИМАНОВСКИЙ Р. Ч., ГУСИНСКИЙ А. В.

ОАО «АЛЕВКУРП» Белорусский государственный университет информатики и радиоэлектроники (г. Минск, Республика Беларусь)

E-mail: halo11@mail.ru

Аннотация. В статье исследуется возможность компенсации кубической составляющей фазового распределения при смещении облучателя в офсетной зеркальной антенне путем введения замедляющей линзы.

Abstract. The article investigates the possibility of compensating the cubic component of the phase distribution when the irradiator is displaced in an offset mirror antenna by introducing a retarding lens.

Введение

В режиме излучения облучатель вместе с элементами его крепления создает препятствие для лучей, исходящих от зеркала параболической антенны. Для решения этой проблемы облучатель может быть смещен из фокуса[1]. Такую антенну называют антенной со смещенным облучателем или офсетной антенной. В офсетной антенне облучатель находится в стороне от пути распространения волн так, что искажения диаграммы направленности (ДН) антенны не происходит, но впоследствии меняются амплитудное и фазовое распределение поля на раскрыве зеркала, где в большей степени фазовое распределение (ФР) влияет на параметры зеркальной антенны.

Постановка задачи

ФР после смещения облучателя в фокальной плоскости становится близким к линейному. В результате главный максимум ДН зеркала отклоняется в сторону уменьшения фазы на раскрыве, т.е. в сторону, противоположную смещению облучателя. На рис.1 показан угол отклонения облучателя от фокальной оси *a* и угол отклонения главного максимума ДН зеркала Θ_m . Отношение Θ_m/a называется коэффициентом редукции $K_{peg}[2]$. Этот коэффициент меньше единицы, так как при смещении облучателя в фокальной плоскости на раскрыве появляется не только линейное фазовое распределение, но и кубическое, которое приводит к противоположному смещению главного максимума ДН зеркала и росту боковых лепестков.

Рис.1. Фазовое распределение на раскрыве зеркала

Влияние кубической фазовой ошибки проиллюстрированы на рис.2 и проявляется в следующем: главный максимум ДН отклоняется от нормали к оси антенны на угол Θ_m в сторону

«ИФОРМАЦИОННЫЕ РАДИОСИСТЕМЫ И РАДИОТЕХНОЛОГИИ 2020»

Республиканская научно-практическая конференция, 28-29 октября 2020 г., Минск, Республика Беларусь

убывания фазы на антенне; боковые лепестки растут с той стороны главного лепестка ДН, куда отклоняется главный лепесток, и уменьшаются с противоположной стороны; главный лепесток приобретает асимметрию, как и при линейном фазовом распределении. Все эти явления зависят от величины изменения фазы в кубической составляющей на краю раскрыва антенны.

Рис. 2. Влияние кубической составляющей ФР в ДН

Избавление от этой составляющей позволяет сделать К_{ред} = 1, что приведет в соответствие расстояние смещения облучателя и угол наклона главного максимума ДН, а также сравняет первые боковые лепестки, что в целом снизит их уровень.

Использование замедляющей линзы

Для реализации компенсации кубической составляющей ФР было решено испытать эффективность работы замедляющей линзы из однородного диэлектрика и одной преломляющей поверхностью [3]. Она преобразует сферический фронт волны в плоский своей гиперболической формой. Для решения поставленной задачи необходимо преобразовать эту форму в другую в соответствии закону изменении фазы:

$$\Psi(l) = \frac{\omega}{c} r(l) + \frac{n\omega}{c} h(l), \tag{1}$$

где ω - круговая частота волны; c - скорость света; r - расстояние от фокуса до поверхности линзы; n – коэффициент преломления линзы; h – толщина линзы; l – закон изменения формы преломляющей поверхности линзы.

Учитывая, что линзу с не линейной формой преломляющей поверхности не просто изготовить и смоделировать в масштабах долей миллиметров и на начальном этапе необходимо получить предварительные результаты работы линзы в зеркальной антенне, то упростим форму до линейной[4], смоделированной в САПР CST Studio и представленной на рис.3. Моделирование производилось на частоте 10ГГц.

Самым распространенным материалом для линз является фторопласт, однако, из-за его низкой диэлектрической проницаемости ($\varepsilon = 2,1$) размер линзы в широкой ее части приближается к 4 миллиметрам для заметного влияния на фазовый фронт, что является чрезмерным в текущем случае, поэтому был выбран однородный диэлектрик с $\varepsilon = 10,2$. Результаты моделирования со смещенным облучателем на $a = 8^{\circ}$ и с различными размерами и соответствующими им уровням левого (ЛБЛ) и правого (ПБЛ) боковых лепестков сведены в таблицу 1.

Рис. 4. Форма линзы в раскрыве рупора, смоделированного в CST Секция 1 «Радиотехника, радиотехнические измерения, техника CBЧ» 39

«ИФОРМАЦИОННЫЕ РАДИОСИСТЕМЫ И РАДИОТЕХНОЛОГИИ 2020»

Республиканская научно-практическая конференция, 28-29 октября 2020 г., Минск, Республика Беларусь

Размер, мм	Смещение главного максимума ДН, °	Уровень ЛБЛ, дБ	Уровень ПБЛ, дБ
0 (линза отсутствует)	172,3	-15,25	-14
0,5	172,1	-16,29	-15,39
1	172	-16,64	-15,56
1,5	171,9	-15,98	-15,13
1,6	172	-15,89	-14,85
1,7	171,9	-15,82	-15,33
1,8	171,9	-16,02	-15,89
1,9	171,8	-15,87	-16,03
2	171,8	-15,71	-16,04

Таблица 1. Результаты моделирования

Заключение

По результатам моделирования видно, что наилучшим вариантом является линза с шириной в районе 1,8-1,9 миллиметров при которой снижается разность в первых боковых лепестках и их общий уровень с -14 дБ до -16 дБ, так же при использовании линзы главный максимум ДН смещается в необходимую сторону, правда, чрезмерно, но уже виден выигрыш с $|0,3^{\circ}|$ до $|-0,1^{\circ}|$.

Рис. 5. Участок ДН зеркальной антенны с линзой

Для наглядности представлена часть ДН на рис. 5, в которой видно, что первый ноль с левой стороны от максимума довольно сильно поднят. Решением этого вопроса является переход от упрощенной линейной формы линзы к форме фазового распределения на рис. 1. В целом использование замедляющей линзы в раскрыве облучателя уточняет работу зеркальной антенны при достаточной дешевизне и простоте эксплуатации линз. Так же открывает возможности над дальнейшими исследованиями по взаимодействию линз и ФР, например, реализации метода фокусировки измерения характеристик антенны в зоне Френеля без манипуляций с рефлектором или положением облучателя.

Список использованных источников

1. Бахрах Л. Д., Владимирова О. Н., Курочкин А. П. Соболев Г. А., Фридман Г. Х. Применение методов когерентной оптики и голографии к задачам антенной техники и обработки информации. М.: «Связь», Антенны, вып.2, 1976, с. 33-54.

2. Юрцев О. А. Резонансные и апертурные антенны. Ч.2: Методическое пособие по курсу "Антенны и устройства СВЧ" для студентов специальности "Радиотехника " В 3 Ч. - Мн.: БГУИР, 2000.

3. Зелкин Е. Г., Петрова Р. А., Линзовые антенны. М., «Сов. Радио», 1974, 280 с.

4. Ingals A. Optical simulation of microwave antennas. «IEEE Trans on Antennas and Propagation», AP-14, 1, 1966, pp.2-6.