
Constant Multiplication Based on Boolean
Minimization

Danila Gorodecky and Petr Bibilo

National Academy of Science of Belarus, Minsk, Belarus
danila.gorodecky@gmail.com

bibilo@newman.bas-net.by

Abstract. This contribution studies constant multiplication X · C and
X · C (mod P ), where constant C achieves 2263 bits and variable X
varies up to 10 bits. We aim to develop an efficient approach to design
constant multiplication for FPGA and ASIC. The proposed technique
demonstrates up to 2 times advantage in performance and up to 5 times
advantage in area costs under direct multiplication on FPGA, up to 7
times in performance in custom library on ASIC.

Keywords: Constant multiplication · modular multiplication · multi-
plier · Boolean minimization · BDD · ROBDD · computer arithmetic ·
RNS · FPGA · ASIC.

1 Introduction

The constant multiplication (CM) is an important operation [1–13] that appears,
for example, in many numerical algorithms, signal, image, video processing appli-
cations, cryptography, neural networks, and the residue number system (RNS).

Multiplication has a specific realization depending on implementation on
application-specific integrated circuit (ASIC) and field-programmable gate array
(FPGA).

The efficiency of multipliers on ASIC is strongly related to the libraries ele-
ments and can significantly vary depending on the library.

Contemporary FPGAs have embedded hard multipliers distributed through-
out the fabric due to the importance of multiplication. Nonetheless multiplication
based on lookup tables (LUTs) in the configurable logic fabric are often used for
high-performance designs for several reasons [11]:

– embedded multiplier operands are fixed in size and type, such as 25 × 18
two’s complement, while LUT-based multiplication can be any size or type;

– the number and location of embedded multipliers are fixed, while LUT-based
multiplication can be placed anywhere and the number is limited only by
the size of the reconfigurable fabric;

– embedded multipliers cannot be modified, while LUT-based multiplication
can use techniques such as merged arithmetic [14], approximate arithmetic
[15], and multiplication by modulo [12, 16] to optimize the overall system.



One common and efficient way for realizing CM (and multiplication in com-
mon) circuits is to transform them into several additions, subtractions and bit-
shifts [1–11]. On higher level of abstraction can be implemented wide spread
in such algorithms as schoolbook multiplication [17], Karatsuba multiplication
[18], Fourier multiplication [19], Booth multiplication [20], Montgomery multi-
plication by modulo [21] and many others [17, 22].

Number of unities in binary representation can be considered as significant
feature for the efficient multiplication on deeper level of abstraction[6, 4].

We propose a technique of CM design based on Boolean minimization focus-
ing on further implementation in multioperand addition in neural networks and
backward transformation in RNS. This technique of CM design is suitable for
standard multiplication X · C and multiplication by modulo X · C (modP ) for
up to thousands bits of constant C and modulo P , but it is limited up to 14-16
bits of input variable X.

Following this brief introduction, Section 2 explains Boolean functions imple-
mentation in the context of CM design and considers examples, Section 3 demon-
strates result of the synthesis on FPGA and ASIC, compares critical paths and
area costs with direct multiplication proposed by Xilinx and Mentor Graphics,
finally we summarize the results and plan further research in Section 4.

2 Representation of Constant Multiplication by Boolean
Functions

The result of any arithmetic computation can be represented or approximated
by sum-of-products (SOPs). However the original representation given by truth
tables may be unmanageable by synthesis tools, e.g., the truth table of the
product of two 16-bit input operands requires 64 columns (16 columns for each
operand and 32 columns for the result) and more than four billions rows.

Nevertheless truth table representation might be efficiently implemented in
the design of combinational logic. We figured out that representation of arith-
metic operations by up to 212 rows truth table with further two-level minimiza-
tion of Boolean functions [23, 25] is efficient [26, 27]. The performance and the
area costs of arithmetic units designed with two-level minimization comparing
with standard electronic design automation (EDA) tools achieve 30 times.

This contribution considers CM by using multi-level minimization based on:

– truth table representation of the results of arithmetic functions;
– binary decision diagram (BDD) minimization with parsing by j subfunctions.

2.1 Truth Table Representation of Constant Multiplication

In the context of arithmetic operations (i.e. X + C = R, X · C = R, X ·
C (mod P ) = R and etc.) the constant C can be represented as the truth
table of a system of Boolean functions rn, rn−1, . . . , r1 depended on variable bi-
nary inputs xm, xm−1, . . . , x1 without dependence on binary representation of a



constant ck, ck−1, . . . , c1, where R = (rn, rn−1, . . . , r1), X = (xm, xm−1, . . . , x1),
and C = (ck, ck−1, . . . , c1).

Implementation of truth table allows to represent any arithmetic operation
under a really big value of constants (in thousand bit-ranges), but limited by
small bit-range of input variables (up to a couple of dozen of bits). Two-level
minimization of the system of Boolean functions imposes additional restriction
on bit-range of input variable X and limited to 15 − 20 variables depending
on number of Boolean function n. For example, two-level minimizer Espresso is
corrupted of truth table for n,m > 15. This question has been investigated in
[26, 27].

We propose to represent arithmetic operations in small bit-range of inputs
and up to thousands of bits of constant. This concept is easily demonstrated
on the truth table representation. A line of the table represents binary inputs of
variable (or variables) and the appropriate binary result of arithmetic calculation
with input (or inputs) and the constant. The constant does not change its values
independently to a value of input. This fact allows to do not specify a constant
value at all, but it is counted by default for every line of the truth table.

Let’s consider multiplication of the 5-bit constant 19 on 4-bit variable X by
4-bit modulo 13. The central part of Table 1 is the truth table and describes
(19 · X) (mod 13) = R. It consists of 13 lines, because X varies from 0 to 12
according to the modulo 13. As well the modulo value defines 4-bit result of
multiplication.

Table 1: Truth table for (X · 19) (mod 13) = R

decimal X x4 x3 x2 x1 r4 r3 r2 r1 (X · 19) (mod 13) = R

0 0 0 0 0 0 0 0 0 (0 · 19) (mod 13) = 0
1 0 0 0 1 0 1 1 0 (1 · 19) (mod13) = 6
2 0 0 1 0 1 1 0 0 (2 · 19) (mod13) = 12
3 0 0 1 1 0 1 0 1 (3 · 19) (mod13) = 5
4 0 1 0 0 1 0 1 1 (4 · 19) (mod13) = 11
5 0 1 0 1 0 1 0 0 (5 · 19) (mod13) = 4
6 0 1 1 0 1 0 1 0 (6 · 19) (mod13) = 10
7 0 1 1 1 0 0 1 1 (7 · 19) (mod13) = 3
8 1 0 0 0 1 0 0 1 (8 · 19) (mod13) = 9
9 1 0 0 1 0 0 0 1 (9 · 19) (mod13) = 2
10 1 0 1 0 1 0 0 0 (10 · 19) (mod13) = 8
11 1 0 1 1 0 0 0 1 (11 · 19) (mod13) = 1
12 1 1 0 0 0 1 1 1 (12 · 19) (mod13) = 7

2.2 Partitioning Boolean Functions

In this contribution we explore minimized BDDs in the context of arithmetic
operations representation. BDD is well know and basic technique of Boolean



functions minimization [28–32]. Generally, it is based on Shannon expression
[33]:

f(x1, x2, . . . , xm) =

xi · f(x1, x2, ..., xi−1, 0, xi+1, ..., xm) ∨ xi · f(x1, x2, ..., xi−1, 1, xi+1, ..., xm).

We consider minimized BDD as the reduced ordered BDD (ROBDD) with
minimal number of nodes [22, 34]. The resulting ROBDD is split minimized
DBB with j-splitting procedure Parsin into j-input subfunctions [35], where j
is taken according to the demands of custom libraries or number of LUT inputs
on FPGA.

Example. Consider j = 4 and following functions:

f1 = x1 · x2 · x4 · x5 · x6 ∨ x1 · x4 · x5 · x6 ∨ x2 · x3 · x5;

f2 = x1 · x4 · x5 · x6 ∨ x1 · x3 · x5 ∨ x1 · x2 · x3 · x5 · x6 ∨ x1 · x2 · x4 · x5 · x6;

f3 = x1 · x2 · x3 · x6 ∨ x1 · x2 · x4 · x6 ∨ x1 · x3 · x4 · x6∨
x1 · x2 · x4 · x5 · x6 ∨ x1 · x2 · x5 ∨ x2 · x3 · x5.

These functions are represented with the truth table shown in Table 2.

Table 2: Truth table for f1, f2, f3

x1 x2 x3 x4 x5 x6 f1 f2 f3
1 1 - 0 1 0 1 0 0
0 - - 1 0 1 1 0 0
0 - - 0 1 0 0 1 0
0 - 0 - 1 - 0 1 0
1 1 1 - 1 0 0 1 0
1 0 - 1 1 1 0 1 0
1 0 0 - - 1 0 0 1
1 0 - 1 - 1 0 0 1
1 - 0 1 - 1 0 0 1
0 1 - 0 1 0 0 0 1
1 0 - - 1 - 0 0 1
- 1 0 - 1 - 1 0 1



In the result of BDD-minimization with BDD-builder [35] f1, f2, f3 take the
following form:

f1 = x1 · ψ1 ∨ x1 · ψ2, f2 = x1 · φ3 ∨ x1 · ψ4, f3 = x1 · ψ2 ∨ x1 · ψ6,

ψ1 = x2 · φ1 ∨ x2 · φ2, ψ2 = x2 · φ3, ψ4 = x2 · s1 ∨ x2 · φ4,
ψ6 = x2 · φ5 ∨ x2 · φ6, φ2 = x3 · s2 ∨ x3 · s1, φ3 = x3 · λ3 ∨ x3 · s4,

φ4 = x3 · λ4, φ5 = x3 · λ2 ∨ x3 · s2, φ6 = x3 · s2,
s1 = x4 · λ1, s2 = x4 · λ3 ∨ x4 · λ2, s4 = x4 · λ4,

λ1 = x5 · ω1, λ2 = x5 · ω1 ∨ x5, λ3 = x5,

λ4 = x5 · ω2, ω1 = x6, ω2 = x6.

(1)

Multilevel representation of (1) is represented on Figure 1.
Intermediate functions φ2, φ4, φ5, φ6, s4, λ1, λ3, ω1, ω2 have been annihilated

in the result of j-splitting procedure Parsin [35], where j = 4. Index j has been
taken according to 4-input LUTs. The result of Parsin procedure implemen-
tation of the representation 1 is transformed into 11 equations shown in the
representation 2, which are synthesised into 11 4-input LUTs on FPGA shown
on Figure 2.

f1 = x1 · ψ1 ∨ x1 · x2 · φ3, f2 = x1 · φ3 ∨ x1 · ψ4,

f3 = x1 · ψ6 ∨ x1 · x2 · φ3,
ψ1 = s1 · x3 ∨ x2 · x3 · s2 ∨ x2 · s1, φ3 = x3 · x5 ∨ x3 · (x4 · (x5 · x6)),

ψ4 = x2 · s1 ∨ x2 · x3 · λ4, ψ6 = x2 · x3 · s2 ∨ x2 · x3 · s2 · λ2 ∨ x2 · x3 · s2

s1 = x4 · (x5 · x6)), λ4 = x5 · x6 s2 = x4 · x5 ∨ x4 · (x5 · x6 ∨ x5);

λ2 = x5 · x6 ∨ x5.

(2)

3 Experimental Results

Our interests to constant multiplication arises from multioperands additions:

((X1 · C1(mod P ) +X2 · C2(mod P ) + . . .+Xh · Ch(mod P )) (mod P )

and
X1 · C1 +X2 · C2 + . . .+Xh · Ch − r · P,

where C1, C2, . . . , Ch, P , r - natural constants, X1, X2, . . . Xh - natural variables.
Both representations or parts of them are basic in neural networks, image recog-
nition, cryptography, etc. In the context of RNS C1, C2, . . . Ch and P achieve
thousand bits, at the same time X1, X2, . . . Xh may vary from 5 bits to the
bit-range of C1, C2, . . . Ch.

We demonstrate the results of the synthesis of constant multipliers on FPGA
and ASIC in standard arithmetic and by modulo for four bit-ranges of X, four
values of constants C and four moduli P , where



Fig. 1: Multilevel representation of (1) by BDD



Fig. 2: LUTs realization of the representation (2)

1. 5-bit variable X, 33-bit constant C = 4653525600, and 33-bit modulo P =
4974458400. We titled it as 5× 33 for standard multiplication X × C and
5× 33 (33) for multiplication by modulo X × C (mod P ) on the resulting
plots;

2. 7-bit variable X, 64-bit constant C = 15924368328194956800, and 65-bit
modulo P = 19437096635885020800. We titled it as 7× 64 for standard
multiplication X × C and 7× 64 (65) for multiplication by modulo X ×
C (mod P ) on the resulting plots;

3. 8-bit variable X, 128-bit constant C = 32416778599298373624958718270
0260749056, and 129-bit modulo P = 3440553802256821249765557215162
27666176. We titled it as 8× 128 for standard multiplication X × C and
8× 128 (128) for multiplication by modulo X×C (mod P ) on the resulting
plots;

4. 8-bit variable X, 258-bit constant C = 4280925815522465310463080469730
43184312835253714261251748800951846523264768000, and 258-bit modulo



P = 4299378081968682833353007540720649221762526470492365157649595
76638965175392000. We titled it as 8× 258 for standard multiplication X×
C and 8× 258 (258) for multiplication by modulo X × C (mod P ) on the
resulting plots.

We conducted experiments for four sorts of constant multiplication design:

– no per . Multiplication is represented by truth table with ROBDD mini-
mization in BDD-builder [35] without Parsin;

– per 6 . Multiplication is represented by truth table with ROBDD minimiza-
tion in BDD-builder [35] and further 6-splitting procedure in Parsin [35], as
described in Section 2.2. The value 6 in the splitting procedure is relevant
to 6-input LUTs in the FPGA family we experimented on;

– per 12 . Multiplication is represented by truth table with ROBDD mini-
mization in BDD-builder [35] and further 12-splitting procedure in Parsin
[35], as described in Section 2.2;

– Vivado. It is the direct multiplication X · C = R as expression in Verilog.

The experiments are conducted in Xilinx ISE Vivado 15.1 on FPGA and in
Leonardo Spectrum by Mentor Graphics in ASIC in custom library power (see
Table 3).

We measured the performance and the area costs. The performance of mul-
tipliers is considered as the delay in nanoseconds (ns) from input to output
through the critical path. The area costs of constant multipliers is considered as
number of LUTs occupied on FPGA and cells on ASIC according to the custom
library power.

3.1 Constant Multiplication on FPGA

We experimented in Xilinx Vivado 2015.1 on Artix-7 xc7a200tffv1156-1 with
6-input LUTs and 500 input-output blocks. We switched off implementation
of Block RAMs and DSPs by setting up -max bram and -max dsp to 0 in the
properties of the synthesis.

Constant Multiplication in Standard Arithmetic on FPGA. The plots
on Figures 3 and 4 compare of critical paths and number of occupied LUTs for
constant multipliers designed according to the four approaches.

In average per 6 approach leads to the fastest circuits. The slowest realization
is synthesised by the direct multiplication and it is slower approximately on 30%,
15%, 50%, and 20% for 5× 33, 7× 64, 8× 128, and 8× 258 respectively.



Fig. 3: Delay of constant multipliers on FPGA Xilinx Artix-7

5× 33 7× 64 8× 128 8× 258
10

20

30

40

9.6

22.3 21.6

37.3

10.1

18.2

21.9

34

10.2

18.1

24.6

37.8

13.1

20.7

32.2

41.2

INPUT bit-range × CONSTANT bit-range

cr
it

ic
a
l

p
a
th

,
n
s

no per

per 6

per 12

Vivado

Fig. 4: Area costs of constant multipliers on FPGA Xilinx Artix-7

5× 33 7× 64 8× 128 8× 258

500

1,000

15
116

632

979

15
117

477

979

15
117

479

979

57

209

471

1,472

INPUT bit-range × CONSTANT bit-range

a
re

a
co

st
s,

L
U
T
s

no per

per 6

per 12

Vivado

The area costs of multipliers synthesised by per 6 and per 12 are equivalent
and occupy the same number of LUTs as no per for 5×33, 7×64, 8×258 and as
Vivado for 8× 128. In the rest cases per 6 and per 12 uses less number of LUTs
than the direct multipliers in three times for 5× 33, in 1.8 times for 7× 64, and
1.5 times for 8× 258.



Constant Multiplication by Modulo on FPGA. The plots on Figures 5
and 6 compare of critical paths and number of occupied LUTs for constant
multipliers by modulo designed by four approaches.

Fig. 5: Delay of constant multipliers by modulo on FPGA Xilinx Artix-7

5× 33(33) 7× 64(65) 8× 128(129) 8× 258(258)

10

20

30

40

50

8.6

17.1

23.9

38

9.5

17.4
20

41

9.2

17.2

24

42

18.2

29
32.2

53

INPUT bit-range × CONSTANT bit-range (MODULO bit-range)

cr
it

ic
a
l

p
a
th

,
n
s

no per

per 6

per 12

Vivado

In average three ROBDD based approaches lead to equivalent performance
of multipliers by modulo in all cases and faster than direct multiplication by
Vivado approximately in 2 times for 5 × 33(33), 1.7 times for 7 × 64(65), 1.3
times for 8× 128(129) and 8× 258(258).

The area costs of three ROBDD based approaches are significantly lower com-
paring with direct multiplication for 5× 33(33) in 14 times and 7× 64(65) in 2.7
times. The direct multiplication 8× 128(129) occupies on 40% more LUTs than
per 12, on 10% than no per and on 5% than per 6. All approaches demonstrate
the equivalent number of LUTs for 8× 258(258) multiplication.

3.2 Constant Multiplication in Standard Arithmetic on ASIC

Leonardo Spectrum provides custom and external libraries implimentation op-
tion. We conducted experiments on the custom library power provided by Hi-
Tech factory ”Integral” (Minsk, Belarus). The list of combinational functions of
the library is shown in Table 3.



Fig. 6: Area costs of constant multipliers by modulo on FPGA Xilinx Artix-7

5× 33(33) 7× 64(65) 8× 128(129) 8× 258(258)

200

400

600

800

14

108

650

964

14

108

674

963

14

108

505

963

111

295

706

979

INPUT bit-range × CONSTANT bit-range (MODULO bit-range)

a
re

a
co

st
s,

L
U
T
s

no per

per 6

per 12

Vivado

Table 3: Logic elements of the custom library power

Title of logic element Function of logic element

N f = x1

NA f = x1 · x2

NA3 f = x1 · x2 · x3

NA4 f = x1 · x2 · x3 · x4

NO f = x1 ∨ x2

NO3 f = x1 ∨ x2 ∨ x3

NO4 f = x1 ∨ x2 ∨ x3 ∨ x4

NOA f = x1 · x2 ∨ x3

NAO f = (x1 ∨ x2) · x3

NOA3 f = x1 · x2 · x3 ∨ x4

NAO3 f = (x1 ∨ x2 ∨ x3) · x4

NO3A f = x1 · x2 ∨ x3 ∨ x4

NA3O f = (x1 ∨ x2) · x3 · x4

NOAA f = x1 · x2 ∨ x3 · x4

NAOO f = (x1 ∨ x2) · (x3 ∨ x4)
NO3AA f = x1 · x2 ∨ x3 · x4 ∨ x5

NA3OO f = (x1 ∨ x2) · (x3 ∨ x4) · x5

NA3O3 f = (x1 ∨ x2 ∨ x3) · x4 · x5

NO3A3 f = x1 · x2 · x3 ∨ x4 ∨ x5

NO3AAA f = x1 · x2 ∨ x3 · x4 ∨ x5 · x6

NA3OOO f = (x1 ∨ x2) · (x3 ∨ x4) · (x5 ∨ x6)



In order to achieve the maximum performance (i.e. the shortest critical path)
we set up delay optimization and optimize longest path (no constrains) in the
list of options for the synthesis.

The plots on Figures 7 and 6 compare of critical paths and elementary cells
for constant multipliers designed by four approaches.

Any arithmetic operation by modulo are not synthesizable in Leonardo Spec-
trum, thus we compared of four approaches only for direct multiplication.

Fig. 7: Delay of constant multipliers in custom library power

5× 33 7× 64 8× 128 8× 258

10

20

30

40

4
6.7

8.2 9.3

4.2
7

8.9 9.5

4.7

7.7
9.6

11.1

29.5
28.3

42.6

22.7

INPUT bit-range × CONSTANT bit-range

cr
it

ic
a
l

p
a
th

,
n
s

no per per 6 per 12 Leonardo

In average all three approaches based on ROBDD provide significantly faster
data processing then the direct CM: in 7 times for 5× 33, in 4 times 50%, in 2
times for 7× 64, in 5 times for 8× 128, in 2 times for 8× 258.

The multipliers based on ROBDD minimization without Parsin (no per) and
with 6-splitting procedure in Parsin have more or less equivalent area costs for all
bit-ranges with minor advantage by (no per). Multipliers based on 12-splitting
procedure occupy to up to 1.5 times more cells than both others. Unexpected
and in opposite to the performance the area costs of direct multipliers exceed in
3-5 times other three types only for 5 × 33. In the rest cases direct multipliers
smaller in 1.3 times for 7 × 64, in 2 times for 8 × 128, and significantly smaller
in 9 times for 8× 258. Note curious fact that the area costs of direct multiplier
for 8× 258 is smaller than even direct multipliers 7× 64 and 8× 128.

4 Conclusions and Further Research

We considered three bit ranges of CM for small variable inputs (5-, 7-, 8-bit)
and quite big constants (33-, 64-, 128-, and 258-bit) for standard multiplication,



Fig. 8: Area costs of constant multipliers in custom library power

5× 33 7× 64 8× 128 8× 258

1

2

3

·106
69
,9

51 4.
12
· 1

0
5

1.
32
· 1

0
6

2.
34
· 1

0
6

70
,3

19 4.
46
· 1

0
5

1.
42
· 1

0
6

2.
47
· 1

0
6

1.
01
· 1

0
5

4.
73
· 1

0
5

1.
67
· 1

0
6

3.
14
· 1

0
6

3.
59
· 1

0
5

3.
51
· 1

0
5

7.
16
· 1

0
5

2.
81
· 1

0
5

INPUT bit-range × CONSTANT bit-range

n
u
m

b
er

o
f

lo
g
ic

p
ri

m
it

iv
es

,
ce
ll
s no per

per 6

per 12

Leonardo

as well as multiplication for 33-, 65-, 129-, 258-bit moduli. We propose to use
Boolean representation and minimization to design efficient multipliers in per-
formance and area costs. The synthesis on FPGA shown up to 2 times advantage
in performance and up to 5 times advantage in area costs under direct multi-
plication. Performance of multipliers based on Boolean minimization in ASIC
achieves 7 times and area costs is smaller in one case only.

Our further research will involve implementation of Boolean minimization
for multioperand addition unit

X1 · C1 +X2 · C2 + . . .+Xh · Ch − r · P

and multifunctional floating point computation unit

A ·B + C

for half-, single- and double-precision calculation.

References

1. M.J. Wirthlin and B. McMurtrey, “Efficient Coefficient Multiplication Using Ad-
vanced FPGA Architectures”, in Field-Programmable Logic and Applications. Pro-
ceedings of the 11th International Workshop, FPL 2001, Lecture Notes in Com-
puter Science, Springer-Verlag, Aug. 2001, pp. 555-564.



2. P. Tummeltshammer, J.C. Hoe, and M. Püschel, ”Time-Multiplexed Multiple-
Constant Multiplication”, IEEE TRANSACTIONS ON COMPUTER-AIDED
DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 26, No. 9, 2007,
pp. 1561-1563.

3. A.G. Dempster and M.D. Macleod, ”Generation of Signed-Digit Representations
for Integer Multiplication”, IEEE Signal Procesing letters, Vol. 11, No. 8, 2004,
pp.663-665.

4. Y. Voronenko and M.S. Püschel, ”Multiplierless Multiple Constant Multiplication”,
ACM Transactions on Algorithms, Vol. 3, No. 2, 2007, pp. 1-38.

5. A. Volkova, M. Istoan, F. de Dinechin, and T. Hilaire, ”Towards Hardware IIR
Filters Computing Just Right: Direct Form I Case Study”, IEEE Transactions on
Computers, Vol. 68 , Issue 4, 2019, pp. 597-608.

6. O. Gustafsson, A.G. Dempster, K. Johansson, M.D. Macleod, and L. Wanhammar,
”Simplified Design of Constant Multipliers”, Circuits System Signal Processing,
Vol. 25, No. 2, 2006, PP. 225–251.

7. V. Dimitrov, L. Imbert, and A. Zakaluzny, ”Multiplication by a Constant is Sublin-
ear”, 18th IEEE Symposium on Computer Arithmetic (ARITH ’07), Montepellier,
France, 25-27 June 2007, pp. 261-268.

8. F. de Dinechin, S.-I. Filip†, L. Forget, and Martin Kumm, ”Table-Based versus
Shift-And-Add constant multipliers for FPGAs”, 26th IEEE Symposium on Com-
puter Arithmetic (ARITH ’19), 2019, Kyoto, Japan. pp.1-8.

9. J. Faraone, M. Kumm, M. Hardieck, L. Xueyuan, D. Boland, and P.H.W.
Leong,”Deep Neural Networks using FPGA-Optimized Multipliers”, IEEE Trans-
actions on Very Large Scale Integration Systems (TVLSI), 28(1), 2020, pp. 115-128.

10. M. Kumm, ”Optimal Constant Multiplication using Integer Linear Programming”,
IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 65, Issue 5,
May 2018.

11. E.G. Walters III, ”Reduced-Area Constant-Coefficient and Multiple-Constant Mul-
tipliers for Xilinx FPGAs with 6-Input LUTs”, Electronics No. 6, 2017, pp. 1-29.

12. P.V.A. Mohan, ”Residue Number System. Theory and applications”, Springer In-
ternational Publishing, 2016, 351 p.

13. P. Martins and L. Sousa, ”The Role of Non-Positional Arithmetic on Efficient
Emerging Cryptographic Algorithms”, IEEE Access, 2020, pp. 59533-59549.

14. E.E. Swartzlander, ”Merged Arithmetic”, IEEE Transactions on Computers, Vol.
29, 1980, pp. 946–950.

15. M. Ercegovac, ”On Approximate Arithmetic”, Proceedings of the 47-th Asilomar
Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 2013,
pp. 126–130.

16. A.R. Omondi, ”Cryptography Arithmetic. Algorithms and Hardware Architec-
tures”, Springer Nature Switzerland, 2020.

17. ”Computers, Software, Engineering and Digital Devices”, Ed. R.C. Dorf. – Taylor
and Francis, 2006, 576 p.

18. A. Karatsuba and Y. Ofman, “Multiplication of Many-Digital Numbers by Auto-
matic Computers”, In: Proceedings of the USSR Academy of Science. Vol. 145. 2.
In Russian. USSR, 1962, pp. 293–294.

19. A. Schönhage and V. Strassen, “Fast Multiplication of Large Numbers”, Comput-
ing 7.3 (1971). In German: Schnelle Multiplikation großer Zahlen, pp. 281–292.

20. A.D. Booth, ”A Signed Binary Multiplication Technique”, The Quarterly Journal
of Mechanics and Applied Mathematics. IV (2), pp. 236–240.



21. P.L. Montgomery, ”Modular Multiplication without Trial Division Mathematics
of Computation”, Mathematics of Computation, Vol. 44, No. 170. Apr., 1985, p.
519-521.

22. D.A. Knuth, ”Art of Computer Programming, Volume 4A, The: Combinatorial
Algorithms, Part 1”, Addison-Wesley Professional, 2014.

23. https://embedded.eecs.berkeley.edu/pubs/downloads/espresso
24. L. Amaru, ”New Data Structures and Algorithms for Logic Synthesis and Verifi-

cation”, Springer, 2016.
25. P. Bibilo, L. Cheremisinova, S. Kardash, N. Kirienko, V. Romanov, and D.

Cheremisinov, ”Automatizations of the logic synthesis of CMOS circuits with low
power consumption”, Programnaia ingeniria, 2013, Vol.8, pp. 35-41 (in Russian).

26. D. Gorodecky, “Design of Multipliers Using Fourier Transformations”, Further
Improvements in the Boolean Domain, Cambridge Scholars Publishing, UK, 2018,
Section 3.4, pp. 240-252.

27. D. Gorodecky and T. Villa, “Efficient Hardware Operations for the Residue Num-
ber System by Boolean Minimization”, Advanced Boolean Techniques, Springer
Nature Switzerland, 2019, Section 11, pp. 237-258.

28. C. Y. Lee, ”Representation of Switching Circuits by Binary-Decision Programs”,
Bell Systems Technical Journal, 38:985-999, 1959.

29. R. E. Bryant, ”Symbolic Boolean Manipulation with Ordered Binary Decision Dia-
grams”, ACM Computing Surveys, Vol. 24, No. 3 (September, 1992), pp. 293—318.

30. B. Becker and Rolf Drechsler, ”Binary Decision Diagrams: Theory and Implemen-
tation”, Springer, 1998.

31. T. Sasao, ”Switching Theory for Logic Synthesis”, Springer, 1999.
32. T. Sasao and J.T. Butler, ”Applications of Zero-suppressed Decision Diagrams”,

Morgan & Claypool Publishers, 2014.
33. C.E. Shannon, ”A symbolic analysis of relay and switching circuits”, Electrical

Engineering 57 (12), 1938, pp. 713-723.
34. R.E. Bryant, C. Meinel, ”Ordered Binary Decision Diagrams”, Logic synthesis and

verification. Boston, Dordrecht, London: Kluwer Academic Publishers, 2002. – P.
285–307.

35. P. Bibilo and Yu. Lankevich, ”Minimizing the multilevel representations of systems
of Boolean functions based on Shannon decomposition”, Informatika, N 2, 2017,
pp. 45-57.


