Министерство образования Республики Беларусь Учреждение образования Белорусский государственный университет информатики и радиоэлектроники

УДК 004.032.26:001.1

Кашубин Игорь Андреевич

Методы и способы применения рекуррентных нейронных сетей для генерации системы достоверных знаний

АВТОРЕФЕРАТ

На соискание степени магистра по специальности 1-59 80 01 — Охрана труда и эргономика

Научный руководитель Д.А. Дубовик, кандидат психологических наук, доцент, профессор

КРАТКОЕ ВВЕДЕНИЕ

Рост интереса к разработкам в сфере искусственного интеллекта связан не только с увеличением производительности компьютеров, но и с чередой прорывов в области машинного обучения. На данный момент все идет к созданию в обозримом будущем умного искусственного интеллекта. Однако одной важной стороне этого процесса уделяется незаслуженно мало внимания.

При создании искусственного интеллекта есть два кардинально разных подхода: алгоритмический и с помощью самообучения. В первом случае правила по которым действует искусственный интеллект описываются вручную. Во втором нужно создать алгоритм, который самостоятельно обучится на некотором большом объеме данных, и выделит эти правила сам. При алгоритмическом подходе в глаза бросается очевидный недостаток, который в какой-то степени является и плюсом – отсутствие способности творить. Другими словами, при алгоритмическом подходе искусственный интеллект не сделает то, что в нем не запрограммировано. Однако это не При разрастании искусственного единственный недостаток. количество правил описывающих его, увеличивается И ведёт возникновению логических парадоксов.

Искусственные нейронные сети относятся ко второму подходу - искусственный интеллект, созданный с помощью самообучения. Важно не путать понятие искусственный интеллект с помощью самообучения и самообучение нейронных сетей.

Искусственные нейронные сети приблизили нас к созданию робота способного к осмысленному общению. С их помощью создано немало так называемых ботов. В большинстве своём, конечно, эти боты недостаточно умны, однако в узких сферах эксплуатации они демонстрируют отличные результаты. Например, сфера общественного питания. Автоматы приёма заказов в некоторых фаст-фуд заведениях работают на нейронных сетях. Диалог с посетителем в этих заведениях ведет не живой человек, а компьютер.

Актуальность данной проблемы подтверждает активное участие по поискам решений разнообразных проблем в данной области таких гигантов IT индустрии как Google Inc, Microsoft, а также более мелких по размерам, но не по значимости стартапов MSQRD и Prisma.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Цель и задачи исследования.

Целью данной работы является использование одной из разновидностей архитектуры нейронной сети, такой как рекуррентная, для генерации системы достоверных знаний.

Объект исследования – програмное средство генерации системы доствоерных знаний.

Предмет исследования – методы и способы генерации системы доствоерных знаний.

Задачи исследования:

- сравнительный анализ генеративных и поисковых моделей;
- Выбор сферы имплементации выбранных на основе анализа моделей;
- Разработка приложения для генерации системы достоверных знаний;
- Обеспечить возможность пользователям принимать участия в постоянном развити и улучшении разработанной системы.

Общий объем представленной магистерской диссертации составляет 49 страницы, библиографический список содержит 23 источника.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

первой главе, на основе анализа литературных источников, рассматриваются различные способы генерации методы И достоверных знаний, производится анализ статистических данных, проводится обзор существующих аналогов. На основе исследования технологий и инструментов проектирования нейронных сетей выбираются среда для разработки, среда для создания дизайна, язык разработки, архитектура приложения. По результатам обзора и анализа формируются задачи на проведение исследования.

Вторая глава посвящается теоретической и практической разработке приложения, проектируются выбранные архитектуры нейронных сетей, функциональная модель и интерфейс приложения.

В третьей главе содержатся результаты испытаний. Успешность проведения тестовых испытаний демонстрируют корректность работы программного продукта.

ЗАКЛЮЧЕНИЕ

В ходе работы над диссертацией проведен анализ предметной области, исследованы различные подходы и направления к решению задачи генерации системы достоверных знаний. Результатом этого анализа являлось обобщение достоинств и недостатков существующих решений, которые учтены при формирование функциональных требований к разработанному программному курсу. Каждое решение имеет свои недостатки и приемущества в зависимости от сферы применения.

В процессе выполнения работы были получены следующие результаты:

- 1) Сформулирована постановка задачи.
- 2) Изучены основные алгоритмы для генерации тематических систем достоверных знаний.
- 3) Произведен детальный анализ рекуррентной нейронной сети, подходы к её обучению, проанализированы различные модификации.
- 4) Выполнен подбор обучающих данных в зависимости от сферы использования.
- 5) Произведено обучение сконструированной сети.
- 6) Реализовано эргономичное клиент-серверное приложение с учетом последних трендов UI/UX дизайна.
- 7) Протестированы результаты обучения и работоспособности приложения.
- 8) Продемонстрирован пользовательский интерфейс системы с повышенными качествами эргономичности, надёжности и эффективности.
- 9) Произведено описание основных сценариев использования системы.

По результатам данной работы можно отметить, что поисковые и генеративные модели по-своему хороши. У них есть свои недостатки и преимущества, от которых и зависит в каких ситуациях лучше та или иная модель. В данной работе лучшие результаты были достигнуты при помощи поисковой модели. Преимуществом этой модели является невозможность грамматически неправильного ответа. Также можно заметить, что тщательный подбор обучающего корпуса и увеличение эпох обучения улучшают результат. Разработанное приложение способно автоматизировать беседы в различных социально-коммуникативных сферах. Успешность проведения тестовых испытаний подтверждает корректность работы разработанного программного продукта.