УДК 537.9, 538.91

ВЫРАЩИВАНИЕ МОНОКРИСТАЛЛОВ CU₂CDSNS₄

Калита О.В., Ящук В.А.

Белорусский государственный университет информатики и радиоэлектроники, г. Минск, Республика Беларусь

Научный руководитель: Боднарь И.В. – д-р хим. наук

Аннотация. Кристаллы Cu₂CdSnS₄ предварительно синтезировали в однозонной вертикальной печи. Исходными веществами служили медь, кадмий, олово и сера чистотой > 99.999%. Состав выращенных монокристаллов определяли с помощью микрозондового рентгеноспектрального анализа. В качестве анализатора рентгеновского спектра использовали рентгеновский спектрометр "AVALON-8000". Структуру и параметры элементарной ячейки полученных монокристаллов устанавливали рентгеновским методом. Дифрактограммы записывали на автоматически управляемом с помощью ЭВМ рентгеновском дифрактометре ДРОН–3 М в CuK α – излучении с графитовым монохроматором.

Ключевые слова: монокристаллы, состав, структура, дифрактограмма.

Введение. Кристаллы Cu₂CdSnS₄ предварительно синтезировали в однозонной вертикальной печи. Исходными веществами служили медь, кадмий, олово и сера чистотой > 99.999%. Элементарные компоненты, взятые в стехиометрических соотношениях в количестве ~ 25 г, загружали в двойные кварцевые ампулы. Перед загрузкой компонентов ампулы подвергали химико – термической обработке (травление в смеси кислот HNO₃:HCl=1:3, промывали в дистиллированной воде и отжигали в вакууме при 1273 К). После вакуумирования внутренней ампулы до остаточного давления ~ 10^{-3} Па ее помещали во вторую кварцевую ампулу большего диаметра, которую также вакуумировали. Это предохраняет синтезируемое вещество от окисления на воздухе в случае нарушения целостности внутренней ампулы. К наружной ампуле снизу приваривали кварцевый стержень, служивший держателем, который присоединяли к вибратору. В процессе нагревания ампулы в печи применяли вибрационное перемешивание, которое в значительной мере ускоряет образование соединения и препятствует взрыву ампул.

Основная часть. В начальный период температуру в печи повышали со скоростью ~ 50 К/ч до ~ 870 К. При указанной температуре проводили изотермическую выдержку в течение ~ 2 ч с включением вибрации. Затем с той же скоростью температуру повышали до ~ 1220 К (без выключения вибрационного перемешивания) и снова выдерживали 2 ч. После этого вибрацию отключали и проводили направленную кристаллизацию расплава, понижая температуру печи со скоростью ~ 50 К/ч до ~ 1020 К и при этой температуре проводили гомогенизирующий отжиг полученных слитков в течение 240 ч.

Полученные поликристаллические слитки соединения Cu₂CdSnS₄ растирали в порошок и в количестве ~ 3 г загружали в кварцевые ампулы. Процессы переноса и рост монокристаллов проводили в ампулах внутренним диаметром ~ 18 - 22 и длиной ~170 мм. Первоначально ампула состояла из двух секций. В одну из них загружали Cu₂CdSnS₄ в виде порошка, в другую - капилляр с йодом, предварительно откачанный и запаянный. Йод использовали в качестве переносчика. Ампулу откачивали до остаточного давления ~ 10^{-3} Па, а затем с помощью "магнитного" молотка вскрывали капилляр с йодом, который перегоняли в секцию с исходными веществами и вторую секцию отпаивали. Подготовленную ампулу размещали в горизонтальной двухзонной печи, установленной под углом, которую нагревали следующим образом. Вначале температура в зоне реакции (где находился порошок соединения Cu₂CdSnS₄) была на ~ 100 К ниже, чем зоны кристаллизации, что необходимо для протекания реакции между исходными веществами и йодом с образованием йодидов металлов, а также для очистки зоны от неконтролируемых примесных центров кристаллизации. Через

определенное время температуру в зонах выравнивали и устанавливали ~ 990 К, а затем постепенно, в течение 170 ч, температуру в зоне реакции повышали до 1070 - 1100 К.

При перепаде температур между зонами ~ 110 К, внутреннем диаметре ампул 18 мм, длине 170 мм и концентрации йода ~ 4 - 5 мг/см³ растут игольчатые монокристаллы (рисунок 1).

Рисунок 1 – Дифрактограмма соединения Cu2CdSnS4

Увеличение внутреннего диаметра ампул до 22 мм, при перепаде температур между зонами ~ 80 К, концентрации йода ~ 5 мг/см³ приводит к росту пластинчатых монокристаллов (рисунок 2).

Рисунок 2 - Спектр пропускания монокристаллов Cu₂CdSnS₄

Состав выращенных монокристаллов определяли с помощью микрозондового рентгеноспектрального анализа. В качестве возбудителя тормозного рентгеновского излучения образца использовали электронный луч растрового электронного микроскопа "Stereoscan-360". В качестве анализатора рентгеновского спектра использовали рентгеновский спектрометр "AVALON-8000". Относительная погрешность определения компонентов составляла ± 5%.

57-я научная конференция аспирантов, магистрантов и студентов

2θ _{экс.} ,	2θ _{pac.} ,	d _{exp.} ,	d _{calc.} ,	hkl	I/I _{0,}	2θ _{экс.} ,	2θ _{pac.} ,	d _{exp.} ,	d _{calc.} ,	hkl	I/I ₀ ,
deg.	deg.	Å	Å		%	deg.	deg.	Å	Å		%
16.38	16.34	5.41	5.42	002	15	55.95	55.93	1.6420	1.6426	116	16
22.55	22.50	3.93	3.95	110	8	57.71	57.72	1.5961	1.5958	224	9
27.95	27.93	3.1894	3.1917	112	100	62.71	62.74	1.4803	1.4797	314	4
32.07	32.02	2.7885	2.7927	200	10	66.96	66.96	1.3963	1.3963	400	5
33.03	33.03	2.7096	2.7096	201	21	69.31	69.31	1.3546	1.3546	410	16
36.19	36.16	2.4799	2.4819	202	5	70.63	70.60	1.3325	1.3329	226	4
40.35	40.33	2.2333	2.2344	114	6	73.90	73.88	1.2807	1.2794	118	5
45.91	45.92	1.9750	1.9746	220	12	75.15	75.16	1.26311	1.2630	316	12
46.67	46.66	1.9446	1.9449	221	27	78.51	78.53	1.2173	1.2170	422	7
50.51	50.48	1.8053	1.8063	006	5	85.55	85.55	1.1342	1.1342	424	7
54.60	54.61	1.6794	1.6791	312	16	87.19	87.19	1.1170	1.1170	228	6

Таблица 1- Результаты рентгеновского анализа монокристаллов Cu_2CdSnS_4

Структуру и параметры элементарной ячейки полученных монокристаллов устанавливали рентгеновским методом. Дифрактограммы записывали на автоматически управляемом с помощью ЭВМ рентгеновском дифрактометре ДРОН–3 М в СиК α – излучении с графитовым монохроматором. Для снятия механических напряжений, возникающих при растирании кристаллов, проводили их отжиг в вакууме при 650 К в течение ~2 ч. Спектры пропускания (T_{opt}) в области края полосы собственного поглощения регистрировали на спектрофотометре MC-121 Proscan Special. Для проведения измерений из выращенных монокристаллов вырезали плоскопараллельные пластинки перпендикулярно оси слитка, которые затем шлифовали и полировали с двух сторон до толщин ~ 20 мкм. Для снятия напряжений, образующихся при механической обработке, образцы подвергали обработке в травителе состава C₂H₅OH:Br₂ = 3:1.

Данные микрозондовых рентгеноспектральных измерений показали, что содержание элементов в монокристаллах Cu₂CdSnS₄ составляет Cu:Cd:Sn:S=25.47:12.74:12.15:49.64, что удовлетворительно согласуется с заданным составом в исходной шихте Cu:Cd:Sn:S=25.00:12.50:12.50:50.00.

Результаты рентгеновских исследований представлены на рисунке 1. Видно, что на представленной дифрактограмме Cu₂CdSnS₄ присутствуют максимумы отражения, характерные для тетрагональной структуры.

Углы отражения (2 θ), межплоскостные расстояния (*d*), относительные интенсивности рефлексов (*I*/*I*₀), индексы Миллера плоскостей (*hkl*) для соединения Cu₂CdSnS₄ представлены в таблице 1. Там же приведены рассчитанные значения указанных величин. Видно, что имеется хорошее соответствие между экспериментальными (экс.) и расчетными (расч.) величинами. Параметры элементарной ячейки, рассчитанные методом наименьших квадратов, равны - a=5.585 ± 0.005 Å, c=10.84 ± 0.01 Å.

Спектры пропускания монокристаллов Cu_2CdSnS_4 в области края собственного поглощения представлены на рисунке 2. Величина пропускания указанных монокристаллов составляет 60%.

По спектрам пропускания (Т) рассчитывали коэффициент поглощения (α) по формуле, учитывающей многократное внутреннее отражение в плоскопараллельном образце:

$$\alpha = \frac{1}{d} \ln \left\{ \frac{\left(1 - R\right)^2}{2T} + \sqrt{\left[\frac{\left(1 - R\right)^2}{2T}\right]^2 + R^2} \right\}$$
(1)

где d- толщина образца, R- коэффициент отражения.

На рисунке 3 представлена спектральная зависимость $(\alpha \cdot \hbar \omega)^2$ от энергии фотона $(\hbar \omega)$.

Рисунок 3 – Спектральная зависимость $(\alpha \cdot \hbar \omega)^2$ от энергии фотона $(\hbar \omega)$

Ширину запрещенной зоны определяли путем экстраполяции прямолинейного участка зависимости ($\alpha \cdot \hbar \omega$)² до пересечения с осью абсцисс. Таким образом значения E_g для монокристаллов Cu₂CdSnS₄ составляет 1.377±0.005 эВ.

Список литературы

1. Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency / W. Wang [et al.] // Adv. Energy Mater., 4, 2014. – P. 1301465.

2. Beyond 11% Efficiency: Characteristics of State-of-the-Art Cu₂ZnSn(S,Se)₄ Solar Cells / T.K. Todorov [et al.] // Adv. Energ. Mater., 3, 34, 2013. – P. 1-5.

3. Earth Abundant Element $Cu_2Zn(Sn_1-_xGe_x)S_4$ Nanocrystals for Tunable Band Gap Solar Cells: 6.8% Efficient Device Fabrication / G.M. Ford [et al.] // Chem. Mater., 10, 23, 2011. – P. 2626-2629.

4. Уханов Ю.И. Оптические свойства полупроводников. М., 1977.
5. Боднарь И.В., Павлюковец С.А. // ФТП. 2011. Vol. 45 (11). Р. 1450–1453.

UDC 537.9, 538.91

GROWING CU2CDSNS4 SINGLE CRYSTALS

Kalita O. V., Yashchuk V. A.

Belarusian State University of Informatics and Radioelectronics, Minsk, Republic of Belarus (style T-institution)

I.V. Bodnar-Doctor of Chemical Sciences Annotation.sor

Annotation. Cu2CdSnS4 crystals were previously synthesized in a single-zone vertical furnace. The starting materials were copper, cadmium, tin, and sulfur with a purity of > 99.999%. The composition of the grown single crystals was determined using microprobe X-ray spectral analysis. An X-ray spectrometer "AVALON-8000" was used as an X-ray spectrum analyzer. The structure and parameters of the unit cell of the obtained single crystals were determined by X-ray method. The diffractograms were recorded on a DRON–3 M X-ray diffractometer automatically controlled by a computer in CuK α radiation with a graphite monochromator.

Keywords. single crystals, composition, structure, diffractogram.