СРЕДСТВА ОБРАБОТКИ ВИЗУАЛЬНОЙ ИНФОРМАЦИИ РОБОТАМИ

Современные автоматизированные системы и робототехнические комплексы с каждым годом совершенствуются. Коллаборативные роботы не стали исключением. Сравнивая сегодняшние предложения на рынке с моделями 20-летней давности, можно заметить ряд значительных положительных изменений.

Введение

Наряду с улучшением физических характеристик роботов, уменьшением габаритов, оптимизацией двигательных функций, происходит дооснащение роботизированной системы новыми устройствами — различными схватами, насадками, камерами технического зрения, которые помогают роботу «ориентироваться» в пространстве и взаимодействовать, как с объектами, так и с персоналом.

I. Оснащение роботов

Развитие машинного зрения и искусственного интеллекта делает коботов точнее, продуктивнее и безопаснее. Лидары, 3D-камеры, а также технология слияния данных (sensor fusion) позволяют роботам лучше ориентироваться в окружающей среде и различать объекты вокруг. Такие компании, как Affectiva работают над технологиями, позволяющими при помощи искусственного интеллекта и машинного зрения научить коботов понимать эмоциональное состояние и намерения окружающих их людей. Все это позволяет коботам быстро принимать решения, когда возникает препятствие, или реагировать на внезапные и необычные движения сотрудников рядом, не останавливая производство и даже почти не замедляясь. Также исчезает надобность в точном позиционировании предметов. [1]

Помимо камеры технического зрения коботы оснащены специальными датчиками, передающими сигнал управляющему устройству в момент нахождения человека в зоне работы кобота. При проникновении человека в эту зону, коллаборативный робот прекращает свою работу либо замедляет скорость движения, для обеспечения безопасного нахождения человека рядом.

Еще одним средством, помогающим роботу обнаружить и обработать информацию, является сенсор силомоментного очувствления робота (англ. Force-torque sensor), согласно определению РАН (Российской академии наук), это датчик внешней информации, преобразующий измеряемые компоненты векторов сил и моментов в сигналы, пригодные для обработки в системе силомоментного очувствления робота. [2]

Интегрированная камера и встроенная система технического зрения (СТЗ) – несомнен-

ные преимущества, которыми облают некоторые современные марки коботов. Благодаря СТЗ робот может получать визуальную информацию различимыми методами: обнаруживать объекты и определять их координаты, считывать штрихкоды, распознавать цвета, тексты, осуществлять различные измерительные и инспекционные функции, а также передавать полученную информацию на верхний уровень. Одним из примеров роботов, обладающих встроенной камерой технического зрения, являются коллаборативные роботы производства Японской компании ОМRON.

Подсветка для камеры играет высокую роль в обеспечении качества получения изображения, формирования хороших условий для корректного и оперативного считывания, обработки визуальной информации. Стандартное внешнее освещение, используемое в помещении, не всего обладает достаточными показателями для эффективной работы кобота, поэтому систему оснащают дополнительными лампами, светодиодами, которые при необходимости активизируется и предоставляют дополнительное освещение уже непосредственно вблизи камеры технического зрения. Использование дополнительной подсветки во многом улучшает качество считывания и обработки коботом визуальных данных.

II. Обнаружение объектов

Все возможные функции для обнаружения объектов коллаборативным роботом OMRON приведены в таблице 1. Используя СТЗ, коботы могут обнаруживать специальные наклейкимаркеры (ТМ Landmark) и использовать их в качестве контрольных точек во время программирования и работы. Используя маркер в качестве ориентира, кобот способен легко определить, где находятся объекты по отношению к этому ориентиру. [3]

Основной протокол передачи данных, позволяющих обрабатывать визуальную информацию – HTTP. Как сетевой протокол связи, HTTP работает только в случае установленного соединения между контроллером кобота и СТЗ. Внешняя классификация использует команду POST сти каждый раз при отправке изображения на HTTP-сервер по настроенному URL-адресу. HTTP-сервер проверяет изображения, разбивая

соответствующие ключевые значения, и возвращает результат в пакетах формата JSON роботу. [4]

Коммуникационный протокол Modbus, типа Master/Slave, позволяет пользователям считывать, записывать и сохранять в регистре робота следующие параметры: положение, позу и состояние вводов-выводов кобота. Пользователи могут программировать, используя полученные параметры или контролировать состояние робота. ТМ Robot предоставляет пользователям две версии протокола Modbus: Modbus TCP и Modbus RTU для получения данных от внешнего устройства Modbus или регистра робота.

III. Выводы

Средства и методы обработки визуальной информации, подходы получения данных и способы передачи параметров успешно совершенствуются с выпуском каждой новой модели кобо-

та, что дает уверенность в успешном и положительном развитии отрасли по производству роботов

Список литературы

- Андрей Садовский. Тренды рынка коллаборативных роботов: за чем следить в ближайшие годы? / Андрей Садовский // RoboTrends. Robo-Новости. – 14. 10. 2020.
- 2. Control Engineering Россия [Электронный ресурс] / Профессиональное научно-техническое издание. Режим доступа: https://controleng.ru/teoriya/forcetorque-sensor/. Дата доступа: 01. 04. 2021.
- Industrial Omron [Электронный ресурс] / Коботы OMRON идеальное решение для мелкосерийного производства. Режим доступа : https://industrial. omron. ru/ru/newsevents/news/collaborative-robots. Москва. 24 сентября 2019. Дата доступа : 01. 04. 2021.
- OMRON Corporation. Industrial Automation Company / Software Manual TMvision / Original Instructions. – Kyoto, JAPAN. – Cat. No I627-E-06.

Таблица 1 – Функциональные модули

Модуль	Описание
Соответствие образцу (форме)	Объект может быть обнаружен исходя из информации о его геомет-
	рических особенностях, форме, очертаниях предмета.
Шаблон соответствия (изображе-	Объект может быть обнаружен на основе информации о распреде-
ния)	лении пикселей вблизи заранее заданной площади для обнаруже-
	ния, формы, очертаний для обнаруживаемого предмета. Происходит
	сравнение с «эталонной» предустановленной в системе моделью.
Blob finder – «двоичный поиск».	Поиск объекта происходит на основе разности цветов по координа-
Темное / светлое, день / ночь	там Х, У. При повороте объекта, изменении его угла относительно
	базовой плоскости, появляется разность цветов между осями Х, У.
	Образуются тени, светлые темные области на изображении.
Якорный поиск	Изменяются начальные координаты для обнаружения объекта, пу-
	тем ручной настройки точки старта обнаружения
Соответствие метке	Используется специальная закреплённая метка, для сопоставления
	двух очевидных признаков на объекте. Т.е. расположение объекта
	определяется исходя их его положения относительно установленной
	метки.
Внешнее, стороннее обнаружение	Для обнаружения объекта используется удаленная вычислительная
	платформа с протоколом НТТР.

Архипенко Яна Сергеевна, магистрант кафедры информационных технологий автоматизированных систем БГУИР, arkhipenko.yana.serg@gmail.com.

 $\it Парамонова\ Anuca\ Eгоровна,\$ магистрант кафедры интеллектуальных информационных технологий БГУИР, comewonderland@mail.ru

Hayuный руководитель: Захарьев Вадим Анатольевич, кандидат технических наук, доцент, zahariev@bsuir.by.