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Abstract. Convolutional Neural Networks (CNNs) have 
proven to be one of the most powerful tools for solving 
complex problems in the field of pattern recognition and 
image analysis, even if serious challenges remain. Indeed, 
one of the main drawbacks of CNNs is their inability to 
cope with very high-resolution images. In areas other than 
digital pathology, image resizing is often the simplest and 
most effective solution. However, histopathological images 
not only show a very high resolution, but also contain a lot 
of information at the detail level, making this strategy 
completely ineffective. Other approaches partition the 
image into small patches and analyze them independently, 
losing the context information that is fundamental in 
digital pathology. In this paper, we present a method based 
on a compressed representation of the Whole Slide Image 
(WSI), by building a 3D tensor, that preserves the 
topological and morphological information relating to the 
proximity relationships between the patches of the WSI. 
Tensors are used to train a CNN to solve a binary 
classification task. This technique has been evaluated for 
the analysis of gigapixel Hematoxylin and Eosin (H&E) 
histological images with the aim of supporting the 
diagnosis of breast cancer. Several experiments have been 
performed on the Camelyon16 dataset by generating 
different types of 3D tensors. The results of the proposed 
approach on the breast cancer classification task have 
been compared with some state-of-the-art approaches. 

Keywords: histological images, deep learning, 
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I. INTRODUCTION

In the field of Computer Aided Diagnosis (CAD), 
one of the main challenges concerns the analysis of 
WSIs obtained by scanning tumor tissues stained with 
H&E and commonly used for the diagnosis of tumor 
pathologies. Unfortunately, deep learning approaches 
cannot be applied directly to WSI because of their very 
high resolution. WSI are generally made up of trillions 
of pixels that cannot be managed by current deep 
learning systems. Over the years, different approaches 
have been proposed trying to meet computational needs 
but preserving the information needed to perform 
different tasks of analysis, including the classification 
of the disease. Most classification approaches are 

primarily based on partitioning the entire WSI image into 
patches small enough to be processed independently by a 
deep network. The class of the entire WSI is usually 
inferred by combining the decisions obtained for the 
individual patches [1–3]. Unfortunately, all these 
approaches neglect the information provided by 
relationships between patterns presented by individual 
patches, making the prediction of the CNN an isolated 
result. Recent methods [4–6] map the WSI into a new 
compressed and dense feature space by rearranging patch-
wise feature vectors in a grid-based representation aiming 
to preserve spatial correlations of different patches. 
Although these methods save most of the discriminatory 
information and the grid representation can be used to 
train a CNN to classify the entire WSI, the contextual 
analysis of each point of the grid (i.e the feature vector of 
a patch) is limited to its 3x3 neighboring in the grid. 
Indeed, the analysis of relationships between patterns 
present in the single patches is performed through 3D 
convolutional operations.  

This study proposes a solution for applying CNNs to 
histopathological images that works on the entire image, 
but preserving both detail and contextual information by 
widely extending the contextual analysis of each patch. A 
set of reference patches is mapped into a high dimensional 
deep features space, so that bags of deep features words 
are constructed using a clustering algorithm. A whole 
slide is partitioned into patches, which are projected into 
the same high dimensional deep features space and the co-
occurrences of the deep features words are considered to 
build a 3D tensor that represent the entire image in a more 
compact way.  

The experiments were conducted on the 
Camelyon16 dataset for the binary classification task of 
breast cancer. Comparisons with the state of the art 
confirm that the proposed method opens up to the 
future possibility of further extending this method 
aiming to further reduce the amount of data to be 
processed, while still obtaining good results for 
classification tasks. 
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Fig. 1.  Matrix cluster feature extraction. A WSI is divided into a set of patches and each of them is mapped to a feature vector using  
a pre-trained ResNet-18. To each feature vector is assigned a label cluster obtained computing its minimum distance from the feature 

vectors representing the centroids of the previously computed clusters. The set of label clusters is rearranged in a matrix according 
to the original spatial arrangement of the patches 

II. METHOD

The system takes a WSI of any size as input and its 
pipeline is as follows. The image is partitioned into 
non-overlapping patches, which are projected into a 
high dimensional deep feature space by means of 
suitably fine-tuned CNN. Our strategy requires pre-
processing to divide in clusters the feature vectors of 
the patches in which any WSI of the training set has 
been partitioned. The information about the clusters  is  
used  to  map  later  each WSI to be analyzed in a dense 
feature space that is fed to the image-level classifier. 

After the preprocessing phase, the overall 
framework is functionally divided into two main 
stages, namely Tensor-based Feature Extractor and 
Tensor-based Classifier. 

A. Pre-processing

A pre-trained ResNet-18 [7] is fine-tuned for a
binary classification, i.e. in order to distinguish 
between malignant and benign tissue. The fine-tuning 
is performed by considering patches extracted from a 
reference set of WSI that have been manually annotated 
by pathologists and are provided with the dataset 
adopted for the experiments. The trained network is 
then used to extract a feature vector of length H for each 
considered patch, that is then projected into a 
H-dimensional deep features space. The set of deep 
features vectors extracted from reference patches 
undergo a clustering process that is performed by K-
means to form a set of K bags of deep features words.  

Clusters might include irrelevant or redundant 
information, so that a post-process is applied aiming to 
balance data in each cluster and to remove data 

associated with patches including no tissue. Finally, for 
each cluster i, the corresponding centroid V is stored in 
the i-th row of a matrix MV of K×H size. The matrix 
MV will be used to perform the assigned patches 
extracted from a WSI to the corresponding cluster. In 
other words, MV allows assigning a patch to the 
corresponding bag of deep features words. 

B. Tensor-based Feature Extractor and Classifier

This step is devoted to the generation of a 3D tensor
which stores information on the relationships between 
each couple of different patches lying at distance less 
or equal to D in the WSI input. The distance D is the 
value of the proximity radius determining the 
contextual area considered for each patch, i.e. D is the 
maximum distance between two different patches of a 
WSI for which the relationship between the 
corresponding features can be taken into account.  

In the following, two different patches of a WSI at 
distance less or equal to D will be indicated as adjacent 
patches. Each analyzed patch has size S×S×3. 

Given an input WSI, namely W, with size N×M×3, 
it is partitioned in non overlapping patches of size 
S×S×3. Each patch pi,j is projected in the H-dimensional 
deep features space by computing its deep feature 

vector and assigned with the cluster k∈K with the 

minimum Euclidean distance. Distances are computed 
between the patch feature vector and the cluster 
centroids. A cluster matrix CM of size N/S×M/S is 
constructed, where each (i, j) corresponds to a patch in 
W, and stores the index k of the cluster the patch has 
been assigned with. The index k can be also thought of 
as the cluster label of the patch pi, j  (see Fig. 1). 
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The cluster matrix CM is then used to build a 3D 
tensor storing two different types of information about 
the relationship between feature vectors of adjacent 
patches of W. In more details, let T be a tensor, with size 
K×K×D, whose elements are initially set to 0. The tensor 
T is dealt as the union of two equivalent prisms Pdis and 
Pcor each of them of height D and with bases formed by 
orthogonal triangles with legs of length K. The prism Pdis 
contains the information related to the distribution of 
clusters among the adjacent patches of W, while Pcor 
includes information on the correlations between the 
feature vectors of the adjacent patches of W. 

a. 

Fig. 2. Our tensor-based network. Two different sets of features are 

extracted independently on the basis of the information of the cluster 

matrix and feature vectors of the patches. These sets are stored in 

two different symmetric volumes of the tensor T. For each couple of 

different patches with a given distance d≤D and with feature vectors 

belonging to two defined clusters,  the first volume (red part) specifies 

the occurrence in W of the selected pattern, while the second volume 

of T (orange part) includes the sum of correlation indexes between 

the feature vectors associated to the patches of the selected pattern in 

W. Then, the tensor T is normalized and is fed a deep network

for the classification tasks 

In more details, let be pi,j and pi’,j’ two patches in W 

lying at the distance d ≤ D, which have been assigned to 

clusters k and k’ respectively, that is CM(i, j) =k and 
CM(i’, j’) = k’. The set {k, k’, d} (or also {k’, k, d}) 
identifies a pattern SP in W represented by  any couple 
of  patches of W at distance d in W and with feature 
vectors belonging to k-th and k’-th clusters. The 
occurrence of SP in W is stored into the tensor Pdis. In 
particular, the point (m, n, d) of T, with m = min(k, k’) 
and n = max(k, k’), is incremented by 1 every time the 
pattern SP is detected in W. Concomitantly, the sum of 
correlation indexes between the feature vectors 
associated to the patches in W characterizing SP  is 
stored in Pcor. In particular, for each detected SP in W, 
the point (n, m, d) of T is incremented by the value of the 
Pearson coefficient [8] computed between the feature 
vectors of the patches belonging to the current SP. See 
Fig. 2. 

A normalization process is applied on each slice of 
T to obtain values between -1 and 1. This operation is 

performed adopting the mapping function [9] that is a 
quasi sigmoid normalization. Finally, the normalized 
tensor T is fed to a VGG-11 network [10]. 

III. EXPERIMENTS AND RESULTS

The performance of the proposed method has been 
evaluated on the publicly available histopathology 
image Camelyon16 dataset [11]. 

Different experiments have been performed to 
select: a) the deep networks both for feature vector 
extraction and for classification; b) the patches set for 
the clustering process; c) the normalization function 
and finally, d) the values of K and D. Moreover, 
different strategies have been considered for training of 
our network, considering either single parts or the 
whole tensor, aimed at assessing the potential 
contribution of different kinds of information in T. For 
the sake of brevity, only some of these experiments will 
be presented in this paper. Comparisons with recent 
state-of-the-art techniques are provided on the same 
task with respect to the same testing protocols. 

A. Dataset and cluster data preparation

The Camelyon16 dataset contains 400 H&E WSIs
of sentinel lymph nodes of breast cancer obtained from 
two independent sets collected in Radboud University 
Medical Center (Nijmegen, the Netherlands) and in the 
University Medical Center Utrecht (Utrecht, the 
Netherlands). The dataset is originally split into 270 
WSIs (160 of normal tissue and 110 containing 
metastasis) for the training phase and 130 WSIs (80 of 
normal tissue and 50 containing metastasis) for the test 
phase; this original splitting was preserved in our 
experiments. All WSIs of the training set containing 
metastases are accompanied by manual annotations 
that have been used for both the training of the ResNet-
18 and the selection of patches used for the clustering 
processes. In particular, 120156 patches have been 
extracted from the WSI training set to fine-tune the 
ResNet18 and 15000 patches coming from the WSI test 
set were used for clustering. The involved patches were 
appropriately selected from many different images, 
equally distributing them according to their type, 
normal or tumor tissue. On the basis of different 
experiments, the number of clusters K was set to 256. 

B. Experimental Setup and Results

In this study, each analyzed patch has size S×S×3,
with S equal to 224 and ResNet-18 has been adopted as 
feature extractor for both the clustering process and the 
generation of the tensor T. The extracted features are 
one-dimensional vectors of length H=512 elements.  

 We propose three different scenarios for the 
classification, depending on whether only one part of T 
(Pdis or Pcor) or the whole tensor T is involved in the 
analysis. 
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 For each strategy, the results have been evaluated 
with tensors at different depths, in particular for D = 4, 
8, 16 and 32.  

 The performance of different approaches has been 
compared in terms of standard metrics, namely 
Accuracy, F-Measure, Specificity and Sensitivity. The 
performance has been also measured in terms of the 
Area under the ROC Curve (AUC). The numerical 
results of these experiments are reported in Table I.   

TABLE I. RESULTS 

D AUC Acc. F-score Spec. Sens. 

T 

4 0,61 0,56 0,56 0,45 0,73 

8 0,72 0,64 0,66 0,51 0,79 

16 0,61 0,60 0,66 0,48 0,70 

32 0,61 0,62 0,69 0,50 0,70 

Pdis 

4 0,51 0,62 0,77 − 0,62 

8 0,55 0,62 0,77 − 0,62 

16 0,50 0,62 0,73 0,50 0,66 

32 0,49 0,44 0,51 0,32 0,56 

Pcor 

4 0,71 0,63 0,65 0,51 0,79 

8 0,75 0,63 0,65 0,51 0,78 

16 0,70 0,58 0,56 0,47 0,80 

32 0,72 0,59 0,60 0,47 0,75 

 In Table I, the best value for each measure is written 
in bold, while the best result for each type of tensor is 
written on a gray background. Considering the values 
for each strategy as a whole, setting D = 8 represents 
the best choice for the maximum distance between two 
different patches of a WSI for whose relationship 
between the relative features can be taken into account. 
The highest values of accuracy (0,68), specificity 
(0,51) and sensitivity (0,79) are obtained when the 
whole tensor T is considered. The highest value of F1 
score (0,77) is provided by Pdis (0,66 for T and 0,65 for 
Pcor). The best performance in terms of AUC (0,75) is 
obtained considering Pcor (0,72 for T and 0,55 for Pdis). 
The remaining measures for Pcor show values similar to 
those obtained for T. Thus, the best strategy can be 
considered the one based on Pcor and for D = 8. For this 
configuration, Fig. 3 shows the confusion matrix and 
the ROC curve. 

Fig. 3. Confusion matrix and ROC curve of the network, taking 

into account only Pcor with D = 8 

 The classification result in terms of AUC is 
comparable with those of the studies in [4] and [5]. The 
capacity of these methods to reduce the whole-slide 
images into a compact format was tested in [4] by using 
three different networks: the Bidirectional Generative 
Adversarial Network (BiGAN), a Variational 
AutoEncoder (VAE) and a discriminative model based 
on contrast training, while the method [5] is based on 
two Attention networks (AN). The AUC of the BiGAN, 
VAE and contrastive networks are respectively 0.70, 
0.67 and 0.65, while AN provides an AUC equal to 
0.71. The results are in line with many of those 
obtained from the method presented in this study, in 
which the level of abstraction of whole-slide image 
representation has increased. However, the result 
obtained by our model is quite relevant, since for depth 
levels 4, 8, 16 and 32,  it has obtained an AUC of 0.71, 
0.75, 0.70 and 0.72 respectively, which is equal to or 
higher than that obtained from [4] and [5] methods. 
Thus, the proposed method can represent giga-pixel 
images in an alternative way, while preserving the 
ability to discriminate images by classes even at a 
higher level of abstraction.  

IV. CONCLUSIONS

 In this paper, a methodology for the analysis of 
histological images has been proposed which extracts 
3D tensors by constructing a grid of clustered deep 
features and extracting information related to the 
proximity of the patches. These tensors allow a 
compact representation of WSIs that can be analyzed 
by deep learning techniques. Results have shown that a 
tensor constructed by considering a proximity radius of 
8 patches and the correlation measures between the 
different patches provides the best performance. With 
this type of image synthesis, the results obtained by the 
network exceed those obtained by recent studies 
proposed in the literature, opening up to the future 
possibility of extending this approach to further reduce 
the amount of data to be processed, while still obtaining 
good results in classification tasks. 
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