
Employing of RL Technology to Develop an Adaptive

Motion Controller for a Line Follower Robot

Tatyana Kim

Open Laboratory of Artificial Intelligence

and Robotics

United Institute of Informatics Problems

of NAS of Belarus

Minsk, Belarus

tatyana_kim92@mail.ru

Ryhor Prakapovich

Open Laboratory of Artificial Intelligence

and Robotics

United Institute of Informatics Problems

of NAS of Belarus

Minsk, Belarus

rprakapovich@robotics.by

Abstract. The article is focused on the development

process of an adaptive motion controller for a line

follower robot. The controller learning process took

place on the basis of the digital twin of the mobile robot

using reinforcement learning technology. The digital

twin and the reinforcement learning algorithm were

implemented in MATLAB/Simulink. The Twin–Delayed

Deep Deterministic Policy Gradient Agents method was

used as a learning algorithm. The reward function was

taken to minimize the distance between the center of the

robot and the middle of the nearest section of the color–

contrast line, as well as the difference between the angle

of the robot position and the tangent to the current

section of the line.

Keywords: Reinforcement Learning (RL), MATLAB/

Simulink, Twin-Delayed Deep Deterministic Policy

Gradient Agents (TD3), control system, digital twin

I. INTRODUCTION

Reinforcement learning (RL) is one of the machine
learning methods for solving control problems in
complex technical systems that cannot or can be
problematically described in an analytical form.

The RL method is based on the implementation of
the process of maximizing a certain reward (reward)
signal when enumerating various behaviors of the
studied systems – Agents. The Agent learns to
perform those actions that can bring him the greatest
reward. In the most interesting and important cases,
the Agent's actions can affect not only the local
reward received immediately, but also the situation as
a whole [1]. Forming a long–term reward is a rather
difficult process, since a correctly formed reward will
bring the best result and shorten the training time (the
better the learning process is).

At present, in addition to classical robotic
manipulators, mobile robots (MR) in the form of
robotic carts are in high demand in production. As a
rule, at the lower level of MR control, PID controllers
are most often used [2, 3]. The PID controller allows

to adjust the control action of the actuators in such a
way as to achieve the required values of the objective
function as quickly as possible. Sometimes the
selection of coefficients is a rather long process,
which does not always lead to success, since there is a
chance of overshoot [4, 5]. In closed–loop control
systems (CS), the controller uses status observations
to improve performance and correct random noise and
errors. Engineers use this feedback, as well as the
object of control (OC) and the Environment, to design
the controller according to the requirements of the
system. This concept is easy to put into words, but it
will be difficult to implement, since the model can be
highly nonlinear or have large spaces of states and
actions. There is also a problem related to the fact that
for each line type it is required to find the
corresponding PID values. This problem can be
quickly solved by using RL.

The object of the research is the RoboCake
training MR with a differential drive, which is
supposed to move along the color contrast line. Its CS
is a classic servo drive, including a color contrast line
midpoint sensor and a PID controller that controls the
angular speed of the wheels. Previously, experiments
were carried out on the automatic tuning of the
specified PID controller using the software module
MATLAB “Interactively Estimate Plant Parameters
from Response Data” and the application of genetic
algorithms (GA) [6].

The aim of this work is to implement automatic
learning of a PID controller using the RL method and
compare its effectiveness with other machine learning
methods.

II. SUMMARY OF THE PROBLEM

In RL, the object of research is studied, as a result
of which an artificial neural network (ANN) is
generated that can simulate the desired object. The
most important issue in RL remains the generation of
the training sample for the specified ANN. There are

159

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

several types of Actor–Critic learning algorithms
(Fig. 1). Actor–Critical Agents use either a stochastic
Actor or a deterministic Actor with a value Critic or a
Q–value Critic [7].

Fig. 1. Learning algorithms for Agent–Actor–Critic combined

with stochastic–deterministic Actor and value–Q–value Critic [7]

As the investigated model, the work uses the DT
[8] MR RoboCake, but developed in the MATLAB /
Simulink packages. Following the RL methodology,
in order to achieve this goal, it is required to describe
the software Agent that needs to develop a policy for
managing the educational institution. The specified
MR is required to move along an elliptical curve
(color–contrast line) with the maximum possible
speed and the minimum deviation from its center. The
term “policy” means a mapping that selects the
appropriate actions of the OS on the corresponding
changes in the Environment [9]. In the process of
training, the Agent uses the following data: the
readings of the sensor of the middle of the line
(consisting of 3 light sensors), the distance from the
center of the MR to the center of the color–contrast
line, as well as the angle between the normal of the
nearest section of the line and the direction of
movement of the MR itself. The result of the
observation is the selection of the angular speeds of
rotation of the 2 MR wheels. In order for an Agent to
form actions correctly, he needs to train repeatedly
and for the training to be fruitful, for each action he
must be encouraged (rewarded) or fined. Also,
stopping criteria are used to reduce the learning time.
Each episode of the learning process can stop if: 1) the
simulation exceeds the time allotted for movement
along a full ellipse; 2) the robot has exceeded the
distance to the center of the ellipse line. During each
episode, the Agent chooses an action (forms a policy),
after the end, he updates his parameters based on the
actions and receives the maximum reward. This
process continues until the Agent learns to move
correctly along the line with the specified conditions
[9]. When developing this algorithm, the
Reinforcement Learning Toolbox library was used,
which provides a policy and a reward function using
deep neural networks (DNNs) [10].

III. LEARNING PROCESS

Before starting the learning process, it is required
to create a virtual Environment for the functioning of
the MR and an interface for interacting with it. Next,
you should configure the Agent module from the
“Reinforcement Learning Toolbox” library [10]. To
implement the Agent, the TD3 algorithm was
chosen, which is characterized by the fact that in

addition to the Agent, which offers specific actions of
the Actor on certain indications of the sensory system,
two new entities are also used – two Critics that form
a long–term reward. Next, the Agent is configured and
formed. The final stage is training and verification of
the results of the trained Agent.

After a positive completion of the learning process,
using the getLearnableParameters() command,
weights are extracted from the trained ANN, which
are the desired coefficients of the PID controller.

A. Reward function

The reward process is an important step in RL, as
it affects the performance of the Agent in relation to
the goal that CS MR seeks to achieve. A correctly
selected reward signal forces the Agent to move in the
right direction with a minimum deviation from the
line and maximize the total reward received by the
Agent over a long period of time, stimulating him
(Agent) for long–term rewards. The reward is formed
in the form of a scalar signal that is received by the
Agent and generated by the Environment.

“Two criteria are taken into account as a reward
for a committed action. First, the distance (r) from the
center of the robot (x,y) to the nearest unvisited point
(x0 y0) of the ellipse located on the line is calculated
using the formula for calculating the distance between
two points (1). The closer the Agent, the more reward
he will receive, the further, the less reward” [11].
Secondly, calculate the angle (φ) between the tangent
to the ellipse at the point (x0 y0), where the robot
should be, and the robot guide using formula (2). The
smaller the angle (φ), the more the Agent will receive
a reward (Fig. 2).

𝑟 = √(𝑥– х0)
2

+ (𝑦– у0)
2

(1)

𝜑 = arctan (|–𝑏2∗𝑠𝑖𝑛𝑠𝑖𝑛 (𝛼) ∗𝑅

𝑎2𝑐𝑜𝑠𝑐𝑜𝑠 (𝛼) ∗𝑅
|)

(2)

where b is the semi–minor axis, a is the semi–major
axis, α is the angle between the radius (R) and the
semi–major axis (a), R is the radius of the ellipse [12].

Since our reward signal consists of 2 signals
combined into a scalar, then we determine that the
distance between the line and the robot is of
paramount importance, and the resulting angle (φ) we
reduce the influence to get the reward.

160

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

Fig. 2. The direction of movement of the robot, r is the minimum

distance to the nearest point on the elliptic curve

B. Implementation of the Environment

The Environment is a DT MR implemented in the
MATLAB application package [9], which generates
the following states for the Agent:

– the position of the robot;

– indication from the sensor.

C. Agent implementation

The Agent is an CS that studies the CO and
receives the following states from the Environment:

– observation, which includes:

– the previous formed action;

– the difference between the current state of the
sensor and the desired value;

– the previous generated award;

– the current reward for the performed action;

– stopping criteria.

The Agent interacting with the Environment
“implements the following basic functions necessary
for the work of RL:

– list of available actions;

– handling status and awards from the
Environment;

– obtaining the accumulated experience, presented
in the form of a neural network (NN) for the
Actor and the Critic” [11].

The list of available actions includes the angular
speed from the left and right wheels, where the
constant speed is 12 rad/s with a wheel radius of
0.025 cm.

The Agent receives readings from 3 sensors, such
as the encoders of the right and left wheels and 1 light
contact sensor, which determine the speed of the
wheels and the location of the robot, as well as the
previous action that the Agent formed.

The Agent receives the current reward when it
minimizes the distance between the nearest point on the
ellipse and the robot's location, while also minimizing
the slope between the tangent to the ellipse and the
robot's rail. The reward function for the RL Agent was
defined as negative, since the RL Agent maximizes this
reward, thereby minimizing the error.

The conditions are the criteria for stopping, formed
in such a way as to shorten the training time. If the
robot has exceeded the specified value (20 cm), then
training starts over.

The learning process was built on the basis of
TD3. This TD3 algorithm is the next version of the
DDPG (Deep Deterministic Policy Gradient)
algorithm, which is more reliable, increases the
stability [13] of learning, and “Eliminates function
approximation errors in methods of criticizing actors”
[14]. The exceptional nature of this algorithm is that it
combines 3 main algorithms for RL, such as Double
Deep Q–Learning [15], Policy Gradient [16] and
Actor–Critic [17].

This algorithm is based on an Agent–Critic and an
Agent–Actor, which use a Critic with a Q–value and a
deterministic Actor, respectively.

“The advantage of this method is that the TD3
Agent approximates the long–term reward, taking into
account the observation and action, using the 2
presented Critics. When constructing neural networks
for Actor, radial descent optimization can lead to
negative weights. To avoid negative weights, we
replaced the normal fullConnectedLayer() with
fullConnectedPILayer(). This layer ensures that the
weights are positive” [18]. After training, we extract
these weights for our PID controller and apply them to
the test model.

Fig. 3. Architecture of Reinforcement Learning based on DT

in the MATLAB modeling Environment

D. Learning Algorithm

At this stage, we are ready to train the Robot, this is a
rather long procedure, and in this case the training process
took 2.15 hours and as a result, everything that the CS
setup specialist had to do to set the correct architecture
and calculate the CS parameters, all this did RL.

161

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

IV. THE RESULTS OBTAINED, THEIR

SIGNIFICANCE AND COMPARISON WITH

PREVIOUS WORK

In the current research work, a software Agent was
developed using the TD3 algorithm for a simulated
DT of a 2–wheeled robot moving along an elliptical
curve in the MATLAB application package. A
simulation Environment was implemented and a
reward function was developed. Comparing the results
obtained earlier by the GA method [6], with the new
results obtained by the RL method, we can conclude
that the latter method reduces the number of episodes
and training time by several times (Table I).

T
A

B
L

E
 I

.
 L

E
A

R
N

IN
G

 O
U

T
C

O
M

E
S

 O
F

 T
D

3
 A

N
D

 G
A

 M
E

T
H

O
D

N
u

m
b

er
 o

f

ep
is

o
d

es

1
0

0

5
0

0

8
0

0

2
0

0
0

1
5

0
0

2
5

0
0

T
ra

in
in

g

ti
m

e
(h

o
u

rs
)

0
.4

5

2
.1

5

2
.9

0

5
.5

5

4
.1

5

6
.9

4

L
ea

rn
in

g

A
lg

o
ri

th
m

T
D

3

G
A

D

-4
.6

6
5

0
.7

6
9
1

0
.3

0
1
1

-0
.0

6
2
1

-0
.1

5
6
8

I

1
.4

0
6
6

-0
.1

5
9

0
.0

0
8
5

0
.1

5

0

-0
.5

4
5
3

P

1
.3

5
9
3

3
.6

7
6

0
.0

9
0
3

-4
.6

2
7

-1 -0
.4

1
6
4

P
ID

 c
o

n
tr

o
ll

er

1

2

3

4

5

6

Fig. 4. Result of robot training after 2.15 hours, Episode

Reward – the reward received by the robot for each episode,

Average Reward – the average reward for window length

for Averaging equal to 20, Episode Q0 – a critical assessment

of the long–term reward for each episode

This graph shows that the highest reward is 1113,
the average is 715, where the robot can drive an
elliptical curve in 8 seconds minimizing the distance
to the curve.

V. CONCLUSION

In this article, using the RL methods, we have
chosen the optimal values of the PID controller that
controls the movement of the 2–wheel MR along the
color contrast line. For this, a virtual environment for
the functioning of the MR was implemented, a
software Agent was configured, a reward function was
developed, training was implemented using the TD3
method using a deterministic Actor and a Q–value
Critic. As a result, the tuned PID controller allows the
MR to accurately move along the curved color–
contrast line at a speed of 0.66 m /s.

REFERENCES

[1] R. S. Sutton and A. G. Barto, Reinforcement Learning: An

Introduction, London, England, The MIT Press, 2014, pp. 13.

[2] A. V. Philippov, M. A. Kosolapov, I. A. Maslov, and

G. I. Tarasova, “Automated tuning of the PID controller for

the control object of the tracking system using the MATLAB

Simulink software package”, Science, technology and

education, no. 12 (18), 2015, pp. 53–59 (in Russian).

[3] W. S. Levine, “PID Control,” in The Control Handbook, Ed.

Piscataway, NJ, IEEE Press, 1996, pp. 198–209.

[4] F. G. Martins, Tuning PID controllers using the ITAE

criterion, January 2005 International Journal of Engineering

Education 21(5). Intern. J. Engng Ed. Vol. 21, no. 5, pp. 867–

873, 2005 0949–149X/91 Printed in Great Britain.

[5] J. G. Ziegler, N. B. Nichols, “Optimum settings for automatic

controllers,” Trans. ASME, 1942, vol. 64, pp. 759–768,

[6] T. Yu. Kim and G. A. Prokopovich, “Optimization of the

parameters of the PID controller of the educational mobile

robot control system using genetic algorithms”, unpublished

(in Russian).

[7] Reinforcement Learning Agents (Release 2021a). [Online].

Available:https://www.mathworks.com/help/reinforcement-

learning/ug/create-agents-for-reinforcement-learning.html.

[8] T. Yu. Kim, “Development of a digital twin of a mobile robot

for research and educational purposes based on MATLAB /

Simulink”, XVIII International Conference of Young

Scientists "Youth in Science – 2.0'21", submitted for

publication (in Russian), in press.

[9] What Is Reinforcement Learning? (Release 2020b), [Online].

Available:https:// www.mathworks.com/help/reinforcement–

learning/ug/what–is–reinforcement–learning.html.

[10] Reinforcement Learning Toolbox™ User's Guide 2021a,

[Online]. Available: https://www.mathworks.com/help/

pdf_doc/reinforcement–learning/rl_ug.pdf.

[11] M. P. Mayorov, “Reinforcement Learning Algorithm for

Solving a Robot Motion Problem”, master’s thesis, South

Ural State University, National Research University,

Chelyabinsk, Russian, 2019. [Online]. Available:

https://dspace.susu.ru/xmlui/bitstream/handle/0001.74/29488/

2019_222_majorovmp.pdf?sequence=1 (in Russian).

162

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

https://www.mathworks.com/help/reinforcement-learning/ug/create-agents-for-reinforcement-learning.html
https://www.mathworks.com/help/reinforcement-learning/ug/create-agents-for-reinforcement-learning.html
https://ru.wikipedia.org/wiki/%D0%AD%D0%BB%D0%BB%D0%B8%D0%BF%D1%81
https://ru.wikipedia.org/wiki/%D0%AD%D0%BB%D0%BB%D0%B8%D0%BF%D1%81
https://www.mathworks.com/help/pdf_doc/reinforcement-learning/rl_ug.pdf
https://www.mathworks.com/help/pdf_doc/reinforcement-learning/rl_ug.pdf
https://dspace.susu.ru/xmlui/bitstream/handle/0001.74/29488/
https://dspace.susu.ru/xmlui/bitstream/handle/0001.74/29488/
https://dspace.susu.ru/xmlui/bitstream/handle/0001.74/29488/2019_222_majorovmp.pdf?sequence=1

[12] “Ellipse”. [Online]. Available: https://ru.wikipedia.org/

wiki/Эллипс.

[13] S. Fujimoto, H.–H. Meger, D. Meger, Addressing Function

Approximation Error in Actor–Critic Methods, Cornell

University, Oct., 2018. [Online]. Available: https://arxiv.org/

pdf/1802.09477.pdf.

[14] S. Fujimoto, H. Herke, D. Meger, Addressing Function

Approximation Error in Actor–Critic Methods, Cornell

University, Oct., 2018. [Online]. Available: https://arxiv.org/

abs/1802.09477.

[15] H. Hasselt, A. Guez, and D. Silver, Deep reinforcement

learning with double Q–learning. In AAAI, pp. 2094–2100,

2016.

[16] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and

M. Riedmiller, Deterministic policy gradient algorithms, In

ICML, 2014.

[17] R. S. Sutton, D. A. McAllester, S. P. Singh, and Y. Mansour,

Policy gradient methods for reinforcement learning with

function approximation, in: Advances in Neural Information

Processing Systems, 2000, pp. 1057–1063.

[18] Tune PI Controller using Reinforcement Learning (Release

2021a), [Online]. Available: https://www.mathworks.

com/help/reinforcement-learning/ug/tune-pi-controller-using-

td3.html.

163

Pattern Recognition and Information Processing (PRIP'2021) : Proceedings of the 15th International Conference, 21–24 Sept. 2021, Minsk, Belarus. – Minsk :
UIIP NASB, 2021. – 246 p. – ISBN 978-985-7198-07-8.
© United Institute of Informatics Problems of the National Academy of Sciences of Belarus, 2021
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

https://ru.wikipedia.org/wiki/%D0%AD%D0%BB%D0%BB%D0%B8%D0%BF%D1%81
https://ru.wikipedia.org/wiki/%D0%AD%D0%BB%D0%BB%D0%B8%D0%BF%D1%81
https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/pdf/1802.09477.pdf
https://arxiv.org/search/cs?searchtype=author&query=Fujimoto%2C+S
https://arxiv.org/search/cs?searchtype=author&query=van+Hoof%2C+H
https://arxiv.org/search/cs?searchtype=author&query=Meger%2C+D
https://arxiv.org/abs/1802.09477
https://arxiv.org/abs/1802.09477
https://www.mathworks.com/help/reinforcement-learning/ug/tune-pi-controller-using-td3.html
https://www.mathworks.com/help/reinforcement-learning/ug/tune-pi-controller-using-td3.html
https://www.mathworks.com/help/reinforcement-learning/ug/tune-pi-controller-using-td3.html

