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Abstract. The article is focused on the development 

process of an adaptive motion controller for a line 

follower robot. The controller learning process took 

place on the basis of the digital twin of the mobile robot 

using reinforcement learning technology. The digital 

twin and the reinforcement learning algorithm were 

implemented in MATLAB/Simulink. The Twin–Delayed 

Deep Deterministic Policy Gradient Agents method was 

used as a learning algorithm. The reward function was 

taken to minimize the distance between the center of the 

robot and the middle of the nearest section of the color–

contrast line, as well as the difference between the angle 

of the robot position and the tangent to the current 

section of the line. 
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I. INTRODUCTION

Reinforcement learning (RL) is one of the machine 
learning methods for solving control problems in 
complex technical systems that cannot or can be 
problematically described in an analytical form. 

The RL method is based on the implementation of 
the process of maximizing a certain reward (reward) 
signal when enumerating various behaviors of the 
studied systems – Agents. The Agent learns to 
perform those actions that can bring him the greatest 
reward. In the most interesting and important cases, 
the Agent's actions can affect not only the local 
reward received immediately, but also the situation as 
a whole [1]. Forming a long–term reward is a rather 
difficult process, since a correctly formed reward will 
bring the best result and shorten the training time (the 
better the learning process is). 

At present, in addition to classical robotic 
manipulators, mobile robots (MR) in the form of 
robotic carts are in high demand in production. As a 
rule, at the lower level of MR control, PID controllers 
are most often used [2, 3]. The PID controller allows 

to adjust the control action of the actuators in such a 
way as to achieve the required values of the objective 
function as quickly as possible. Sometimes the 
selection of coefficients is a rather long process, 
which does not always lead to success, since there is a 
chance of overshoot [4, 5]. In closed–loop control 
systems (CS), the controller uses status observations 
to improve performance and correct random noise and 
errors. Engineers use this feedback, as well as the 
object of control (OC) and the Environment, to design 
the controller according to the requirements of the 
system. This concept is easy to put into words, but it 
will be difficult to implement, since the model can be 
highly nonlinear or have large spaces of states and 
actions. There is also a problem related to the fact that 
for each line type it is required to find the 
corresponding PID values. This problem can be 
quickly solved by using RL. 

The object of the research is the RoboCake 
training MR with a differential drive, which is 
supposed to move along the color contrast line. Its CS 
is a classic servo drive, including a color contrast line 
midpoint sensor and a PID controller that controls the 
angular speed of the wheels. Previously, experiments 
were carried out on the automatic tuning of the 
specified PID controller using the software module 
MATLAB “Interactively Estimate Plant Parameters 
from Response Data” and the application of genetic 
algorithms (GA) [6]. 

The aim of this work is to implement automatic 
learning of a PID controller using the RL method and 
compare its effectiveness with other machine learning 
methods. 

II. SUMMARY OF THE PROBLEM

In RL, the object of research is studied, as a result 
of which an artificial neural network (ANN) is 
generated that can simulate the desired object. The 
most important issue in RL remains the generation of 
the training sample for the specified ANN. There are 
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several types of Actor–Critic learning algorithms 
(Fig. 1). Actor–Critical Agents use either a stochastic 
Actor or a deterministic Actor with a value Critic or a 
Q–value Critic [7]. 

Fig. 1. Learning algorithms for Agent–Actor–Critic combined 

with stochastic–deterministic Actor and value–Q–value Critic [7] 

As the investigated model, the work uses the DT 
[8] MR RoboCake, but developed in the MATLAB /
Simulink packages. Following the RL methodology,
in order to achieve this goal, it is required to describe
the software Agent that needs to develop a policy for
managing the educational institution. The specified
MR is required to move along an elliptical curve
(color–contrast line) with the maximum possible
speed and the minimum deviation from its center. The
term “policy” means a mapping that selects the
appropriate actions of the OS on the corresponding
changes in the Environment [9]. In the process of
training, the Agent uses the following data: the
readings of the sensor of the middle of the line
(consisting of 3 light sensors), the distance from the
center of the MR to the center of the color–contrast
line, as well as the angle between the normal of the
nearest section of the line and the direction of
movement of the MR itself. The result of the
observation is the selection of the angular speeds of
rotation of the 2 MR wheels. In order for an Agent to
form actions correctly, he needs to train repeatedly
and for the training to be fruitful, for each action he
must be encouraged (rewarded) or fined. Also,
stopping criteria are used to reduce the learning time.
Each episode of the learning process can stop if: 1) the
simulation exceeds the time allotted for movement
along a full ellipse; 2) the robot has exceeded the
distance to the center of the ellipse line. During each
episode, the Agent chooses an action (forms a policy),
after the end, he updates his parameters based on the
actions and receives the maximum reward. This
process continues until the Agent learns to move
correctly along the line with the specified conditions
[9]. When developing this algorithm, the
Reinforcement Learning Toolbox library was used,
which provides a policy and a reward function using
deep neural networks (DNNs) [10].

III. LEARNING PROCESS

Before starting the learning process, it is required 
to create a virtual Environment for the functioning of 
the MR and an interface for interacting with it. Next, 
you should configure the Agent module from the 
“Reinforcement Learning Toolbox” library [10]. To 
implement the Agent, the TD3 algorithm was 
chosen, which is characterized by the fact that in 

addition to the Agent, which offers specific actions of 
the Actor on certain indications of the sensory system, 
two new entities are also used – two Critics that form 
a long–term reward. Next, the Agent is configured and 
formed. The final stage is training and verification of 
the results of the trained Agent. 

After a positive completion of the learning process, 
using the getLearnableParameters() command, 
weights are extracted from the trained ANN, which 
are the desired coefficients of the PID controller. 

A. Reward function

The reward process is an important step in RL, as
it affects the performance of the Agent in relation to 
the goal that CS MR seeks to achieve. A correctly 
selected reward signal forces the Agent to move in the 
right direction with a minimum deviation from the 
line and maximize the total reward received by the 
Agent over a long period of time, stimulating him 
(Agent) for long–term rewards. The reward is formed 
in the form of a scalar signal that is received by the 
Agent and generated by the Environment. 

“Two criteria are taken into account as a reward 
for a committed action. First, the distance (r) from the 
center of the robot (x,y) to the nearest unvisited point 
(x0 y0) of the ellipse located on the line is calculated 
using the formula for calculating the distance between 
two points (1). The closer the Agent, the more reward 
he will receive, the further, the less reward” [11]. 
Secondly, calculate the angle (φ) between the tangent 
to the ellipse at the point (x0 y0), where the robot 
should be, and the robot guide using formula (2). The 
smaller the angle (φ), the more the Agent will receive 
a reward (Fig. 2). 

𝑟 = √(𝑥– х0)
2

+ (𝑦– у0)
2

(1) 

𝜑 = arctan (|–𝑏2∗𝑠𝑖𝑛𝑠𝑖𝑛 (𝛼) ∗𝑅

𝑎2𝑐𝑜𝑠𝑐𝑜𝑠 (𝛼) ∗𝑅
|)

(2) 

where b is the semi–minor axis, a is the semi–major 
axis, α is the angle between the radius (R) and the 
semi–major axis (a), R is the radius of the ellipse [12]. 

Since our reward signal consists of 2 signals 
combined into a scalar, then we determine that the 
distance between the line and the robot is of 
paramount importance, and the resulting angle (φ) we 
reduce the influence to get the reward. 
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Fig. 2. The direction of movement of the robot, r is the minimum 

distance to the nearest point on the elliptic curve 

B. Implementation of the Environment

The Environment is a DT MR implemented in the
MATLAB application package [9], which generates 
the following states for the Agent: 

– the position of the robot;

– indication from the sensor.

C. Agent implementation

The Agent is an CS that studies the CO and
receives the following states from the Environment: 

– observation, which includes:

– the previous formed action;

– the difference between the current state of the
sensor and the desired value;

– the previous generated award;

– the current reward for the performed action;

– stopping criteria.

The Agent interacting with the Environment 
“implements the following basic functions necessary 
for the work of RL: 

– list of available actions;

– handling status and awards from the
Environment;

– obtaining the accumulated experience, presented
in the form of a neural network (NN) for the
Actor and the Critic” [11]. 

The list of available actions includes the angular 
speed from the left and right wheels, where the 
constant speed is 12 rad/s with a wheel radius of 
0.025 cm. 

The Agent receives readings from 3 sensors, such 
as the encoders of the right and left wheels and 1 light 
contact sensor, which determine the speed of the 
wheels and the location of the robot, as well as the 
previous action that the Agent formed. 

The Agent receives the current reward when it 
minimizes the distance between the nearest point on the 
ellipse and the robot's location, while also minimizing 
the slope between the tangent to the ellipse and the 
robot's rail. The reward function for the RL Agent was 
defined as negative, since the RL Agent maximizes this 
reward, thereby minimizing the error. 

The conditions are the criteria for stopping, formed 
in such a way as to shorten the training time. If the 
robot has exceeded the specified value (20 cm), then 
training starts over. 

The learning process was built on the basis of 
TD3. This TD3 algorithm is the next version of the 
DDPG (Deep Deterministic Policy Gradient) 
algorithm, which is more reliable, increases the 
stability [13] of learning, and “Eliminates function 
approximation errors in methods of criticizing actors” 
[14]. The exceptional nature of this algorithm is that it 
combines 3 main algorithms for RL, such as Double 
Deep Q–Learning [15], Policy Gradient [16] and 
Actor–Critic [17]. 

This algorithm is based on an Agent–Critic and an 
Agent–Actor, which use a Critic with a Q–value and a 
deterministic Actor, respectively. 

“The advantage of this method is that the TD3 
Agent approximates the long–term reward, taking into 
account the observation and action, using the 2 
presented Critics. When constructing neural networks 
for Actor, radial descent optimization can lead to 
negative weights. To avoid negative weights, we 
replaced the normal fullConnectedLayer() with 
fullConnectedPILayer(). This layer ensures that the 
weights are positive” [18]. After training, we extract 
these weights for our PID controller and apply them to 
the test model. 

Fig. 3. Architecture of Reinforcement Learning based on DT 

in the MATLAB modeling Environment 

D. Learning Algorithm

At this stage, we are ready to train the Robot, this is a
rather long procedure, and in this case the training process 
took 2.15 hours and as a result, everything that the CS 
setup specialist had to do to set the correct architecture 
and calculate the CS parameters, all this did RL. 
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IV. THE RESULTS OBTAINED, THEIR

SIGNIFICANCE AND COMPARISON WITH

PREVIOUS WORK 

In the current research work, a software Agent was 
developed using the TD3 algorithm for a simulated 
DT of a 2–wheeled robot moving along an elliptical 
curve in the MATLAB application package. A 
simulation Environment was implemented and a 
reward function was developed. Comparing the results 
obtained earlier by the GA method [6], with the new 
results obtained by the RL method, we can conclude 
that the latter method reduces the number of episodes 
and training time by several times (Table I). 
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Fig. 4. Result of robot training after 2.15 hours, Episode  

Reward – the reward received by the robot for each episode, 

Average Reward – the average reward for window length  

for Averaging equal to 20, Episode Q0 – a critical assessment 

of the long–term reward for each episode 

This graph shows that the highest reward is 1113, 
the average is 715, where the robot can drive an 
elliptical curve in 8 seconds minimizing the distance 
to the curve. 

V. CONCLUSION

In this article, using the RL methods, we have 
chosen the optimal values of the PID controller that 
controls the movement of the 2–wheel MR along the 
color contrast line. For this, a virtual environment for 
the functioning of the MR was implemented, a 
software Agent was configured, a reward function was 
developed, training was implemented using the TD3 
method using a deterministic Actor and a Q–value 
Critic. As a result, the tuned PID controller allows the 
MR to accurately move along the curved color–
contrast line at a speed of 0.66 m /s. 
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