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INTRODUCTION 

Mining logical rules (dependencies) from datasets in 

the form of association rules, implicative and functional 

dependencies, and key pattern attracts a great interest 

because of its potential very useful application. It has 

been proven that all the problems of logical rule 

inferring are algorithmically equivalent [Naidenova, 

1992]. These problems are viewed as ones of 

supervised symbolic machine learning. 

One of the algorithms for inferring logical 

dependencies is the algorithm using an effective 

inductive method of constructing sets of cardinality 

(q+1) ((q+1)-sets) from their subsets of cardinality q 

((q)-sets). A (q+1)-set can be constructed if and only if 

there exist all its proper (q)-subsets. For example, the 

algorithms Apriori, AprioriTid, and AprioriHybrid have 

been presented in [Agravalet al., 1996; Stumme, 2002] 

for association rule mining. The same principle 

underlies the algorithm Titanic for generating key 

patterns [Stumme, 2002] and the algorithm TANE for 

discovering functional dependencies [Huhtala et al., 

1999]. The level-wise method of (q+1)-sets’ 

construction has also been proposed for inferring good 

diagnostic tests for a given classification or class of 

objects [Megretskaya, 1988; Naidenova, 1992, 2005, 

2012]. These tests serve as a basis for extracting 

functional dependences, implications, and association 

rules from a given dataset. 

In all enumerated problems, the same algorithm 

deals with different sets of elements (items (values of 

attributes), itemsets, attributes, transactions, indices of 

itemsets or transactions) and checks the different 

properties of generated subsets. These properties can 

be, for example: “to be a frequent (large) itemset”, “to 

be a key pattern”, “to be a test for a given class of 

examples”, “to be an irredundant set of attribute 

values”, “to be a good test for a given class of 

examples”, and some others. If a costructed subset does 

not possess a required property, then it is deleted from 

consideration. This deletion reduces drastically the 

number of subsets to be built at all greater levels. In 

section 2, we introduce a Background algorithm solving 

the task of inferring all maximal subsets of set S (i.e., 

such subsets that cannot be extended) possessing a 

given PROPERTY. The set S can be interpreted 

depending on the context of a considered problem. This 

algorithm implements the level-wise inductive method 

of (q+1)-sets’ construction. In section 3, we consider 

some possible ways of increasing the efficiency of 

Background Algorithm. In Section 4, we propose a 

neural network-like combinatorial data structure for 

constructing (q+1)-sets from their q-subsets. 

1. BACKGROUND ALGORITHM 

By sq = (i1, i2, …, iq), we denote a subset of S, 

containing q elements of S. Let S(test-q) be the set of 

subsets s = {i1, i2, ..., iq}, q = 1, 2, ..., nt, satisfying the 

PROPERTY. Here nt denotes the cardinality of S. We 
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use an inductive rule for constructing {i1, i2, ..., iq+1} 

from {i1, i2, ..., iq}, q = 1, 2, ..., nt-1. This rule relies on 

the following consideration: if the set {i1, i2, ..., iq+1} 

possesses the PROPERTY, then all its proper subsets 

must possess this PROPERTY too. Thus the set {i1, i2, 

..., iq+1} can be constructed if and only if S(test-q) 

contains all its proper subsets.  

Having constructed the set sq+1 = {i1, i2, ..., iq+1}, we 

have to determine whether it possesses the PROPERTY 

or not. If not, sq+1 is deleted, otherwise sq+1 is inserted in 

S(test-(q+1)). The algorithm is over when it is 

impossible to construct any element for S(test-(q+1)). 

Background algorithm: 

Inferring all maximal (not extended) subsets of S 

possessing a given PROPERTY. 

1. Input: q = 1, S = {1,2,…, nt}, S(test-q) = {{1}, 

{2}, ..., {nt}}. 

Output: the set SMAX of all maximal subsets of S 

possessing the PROPERTY. 

2. Sq := S(test-q);  

3. While Sq  q + 1 do 

3.1 Generating S (q + 1) = {s ={i1, ..., i(q + 1)}: ( j) 

(1  j  q + 1) (i1, ..., i(j-1), i(j + 1), ..., i(q + 1)} Sq}; 

3.2 Generating S(test-(q + 1)) = {s = {i1, ..., i(q + 1)}: 

(s  S(q + 1)) & (PROPERTY(s)) = true)}; 

3.3 Reducing S(test-q): S(test-q) = {s = {i1, ..., iq}: (s 

 S(test-q)) & (( s’)(s’  S(test-(q + 1)) s  s’)}; 

3.4. q := q + 1; 

3.5. max := q; 

end while 

4. SMAX := ; 

5. While q  max do SMAX := SMAX  {s: s = {i1, 

..., is}  S(test-q) }; 

5.1 q:= q + 1; 

end while 

end 

For inferring maximally redundant good tests for a 

given class of examples, we have that S is a set of 

indices of positive S(+) and negative S(-) examples, t is 

a set of values of some set of attributes, s(t)  S is the 

set of indices of examples in which t appears, and 

PROPERTY(s) = if s  S_ then true else false.  

For key pattern, we have that S is a set of values of 

some attributes describing considered objects, s  S and 

PROPERTY(s) = if for ( Ai) (Ai  s) P(s)  P (s/Ai ) 

then true else false, where P(s) and P(s/Ai ) are the set 

of indices of object descriptions in which s and s/Ai 

appears, respectively. For irredundant implications, 

PROPERTY(s) repeats the previous case, but it is 

necessary to check an additional property of s. This 

property is “to be a test for a given set of positive 

examples”. 

The most important factor of Background 

Algorithm’s computational complexity is the method of 

generating of q-sets in the level-wise manner. 

Generally, we use the following inductive rules, where 

SN is the family of sets Sq of cardinality q, q = 1, ….., 

nt, Sq  S = {1, …, nt} and CS(q) denotes the number of 

combinations of S on q. 

(1) q = 1, q + 1 = 2; 

sq = {i}, s(q+1) = {i, j}, ( j) ( i  j, {j}  SN; 

(2) q = 2, q + 1 = 3; 

sq = {i, j}, s(q+1) = {i, j, l}, where l different from i, j 

and such that there are in SN 

a) two sets s1 = {i, l}, s2 = {j, l} or 

b) s = {l}; 

(3) q = 3, q + 1 = 4; 

sq = {i, j, m}, s(q+1) = {i, j, m, l}, where l different 

from i, j, m and such that there are in SN 

а) three sets s1 = {i, j, l}, s2 = {i, m, l}, s3= {j, m, l}  

b) three sets s1 = {i, l}, s2 = {j, l}, s3 = {m, l} or 

c) s = {l}; 

(q) q, q + 1; 

sq = {i1, i2, ..., iq}, s(q+1) = {i1, i2, ..., iq, l}, where l 

different from i1, i2, ..., iq and such there are in SN 

a) sets the number of which is equal to CS(q) = CS(nt 

- q) and the cardinality of which is equal to q, such that 

{i1, i2, ..., ip-1, ip+1, ..., iq, l}\{ip} for all p = 1,...., q or 

b) sets the number of which is equal to CS(q - 1) = 

CS(nt – (q-1)), the cardinality of which is equal to q-1, 

such that {i1,i2,...,iq, l}\{ipi,  ipj} for all {pi, pj}  {1,...., 

q} or 

c) sets the number of which is equal to CS(q - 2) = 

CS(nt – (q-2)), the cardinality of which is equal to q-2 , 

such that {i1, i2,...., iq, l}\{ipi, ipj,  ipk} for all {pi, pj, pk}, 

{pi, pj, pk}  {1,2,..., q} or 

d) sets the number of which is equal to CS(1) = CS(nt 

- 1), the cardinality of which is equal  to 1, such that{l}, 

l  {i1, i2,..., iq}. 

The Background Algorithm has an essential 

disadvantage consisting in the necessity to generate all 

subsets of s in Sq, q = 1, 2,…, qmax. But it is possible 

constructing directly an element s  Sq, s = i1, i2,…, iq 

without generating all of its subsets. 

2. A STRUCTURE OF INTERCONNECTED LISTS 

FOR BACKGROUND ALGORITHM 

The inductive rules can be used not only for 

extending sets, but also for cutting off both the elements 

of S and the sets themselves containing these deleted 

elements. If element j enters in sq+1, then it must enter in 
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q proper subsets of sq+1. If we observe that j enters in 

only one doublet (pair), then it cannot enter in any 

triplet. If j enters in only one triplet, then it cannot enter 

in any quadruplet and so on. If an element enters in two 

and only two doublets, it means that it can enter only in 

one triplet. If an element enters in three and only three 

doublets, it can enter in only one quadruplet. 

This reasoning is applicable to constructing triplets 

from doublets, quadruplets from triplets and so on. For 

instance, if a doublet enters in two and only two triplets, 

then it can enters in one quadruplet. If a triplet enters in 

two and only two quadruplets, then it can enter in only 

one set of five elements. 

The removal of a certain element (or set of 

elements) draws the removal of doublets, triplets, 

quadruplets, …) into which it enters. 

Let us name the procedure for removal of elements 

and sets containing these elements the procedure of 

“winnowing”. We realize this procedure with the use of 

a Matrix of Correspondences the columns of which are 

associated with elements of S, and the rows are 

associated with subsets of S. An entrance {i, j} in this 

matrix equals 1, if index associated with column j 

enters in s associated with row i. Let the set S be {{1}, 

{2}, ..., {14}}. Consider the Matrix of Correspondences 

(Table 1) between the 2-component subsets of S 

possessing a given PROPERTY (S(test-2)) and elements 

of S appearing in these subsets. In this matrix, the 

columns are ordered by increasing the number of 

subsets associated with the columns. 

Table 1 - The Matrix of Correspondences for the S (test-2) 

Subset 9 5 6 14 1

0 

1 1

1 

8 12 3 7 4 2 

(9,11) 1      1       

(1,5)  1    1        

(5,12)  1       1     

(4,6)   1         1  

(6,8)   1     1      

(6,11)   1    1       

(1,14)    1  1        

(2,14)    1         1 

(12,14)    1     1     

(2,10)     1        1 

(3,10)     1     1    

(8,10)     1   1      

(1,2)      1       1 

(1,4)      1      1  

(1,7)      1     1   

(1,12)      1   1     

(3,11)       1   1    

Subset 9 5 6 14 1

0 

1 1

1 

8 12 3 7 4 2 

(4,11)       1     1  

(7,11)       1    1   

(8,11)       1 1      

(2,8)        1     1 

(3,8)        1  1    

(4,8)        1    1  

(7,8)        1   1   

(2,12)         1    1 

(3,12)         1 1    

(4,12)         1   1  

(7,12)         1  1   

(2,3)          1   1 

(3,4)          1  1  

(3,7)          1 1   

(2,7)           1  1 

(4,7)           1 1  

(2,4)            1 1 

Element 9 enters in one and only one doublet, 

hence (9,11) cannot be included in any triplet. We can 

delete the corresponding column and row. We conclude 

also that set (9,11) cannot enter in any triplet. 

Element 5 enters in two and only two doublets, 

hence it is included in only one triplet (1,5,12). Element 

5 cannot be included in any quadruplet. We can delete 

the corresponding column and rows 2, 3. 

Element 6 enters in three and only three doublets, 

hence it is included in only one quadruplet (4,6,8,11). 

Element 6 cannot be included in a subset of five 

indices. We can delete the corresponding column and 

rows 4, 5, 6. 

By analogous reason, we conclude that collection 

(1,2,12,14) cannot be extended and we can delete the 

corresponding column and rows 7, 8, 9. Note that all 

subsets (9,11), (1,5,12), (4,6,8,11), and (1,2,12,14) 

possess the PROPERTY. 

Element 10 enters in three and only three doublets, 

hence it is included in only one quadruplet (2,3,8,10). 

This set does not possess the PROPERTY. In this case, 

we have to construct all the triplets with element 10. 

These triplets (2,8,10), (2,3,10), (3,8,10) do not possess 

the PROPERTY, it means that subsets (2,10), (3,10), 

(8,10) are maximal ones possessing the PROPERTY. 

Element 10 can be deleted together with rows 10, 11, 

12. Table 2 shows the reduced Matrix of 

Correspondences. 
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Table 2 - The reduced Matrix of Correspondences (Reduction1) 

Subset 1 11 8 12 3 7 4 2 

(1,2) 1       1 

(1,4) 1      1  

(1,7) 1     1   

(1,12) 1   1     

(3,11)  1   1    

(4,11)  1     1  

(7,11)  1    1   

(8,11)  1 1      

(2,8)   1     1 

(3,8)   1  1    

(4,8)   1    1   

(7,8)   1   1   

(2,12)    1    1 

(3,12)    1 1    

(4,12)    1   1  

(7,12)    1  1   

(2,3)     1   1 

(3,4)     1  1  

(3,7)     1 1   

(2,7)      1  1 

(4,7)      1 1  

(2,4)       1 1 

Element 1 enters in 4 doublets. In this case, we 

construct the following triplets including element 1: 

(1,2,4), (1,2,7), (1,2,12), (1,4,7), (1,4,12), (1,7,12). Only 

triplets (1,4,7) and (1,2,12) possess the PROPERTY. We 

conclude that element 1 cannot be included in any 

quadruplet possessing the PROPERTY; hence it can be 

deleted from consideration with rows 13, 14, 15, 16. 

Since (1,2,12)  (1,2,12,14)), we conclude that subset 

(1,2,12) is not maximal with respect to the PROPERTY. 

Analogously, the consideration of element 11 leads 

to constructing the following subsets: (3,4,11), (3,7,11), 

(3,8,11), (4,7,11), (4,8,11), (7,8,11) from which only 

(7,8,11) and (4,8,11) possess the PROPERTY. We 

conclude that element 11 cannot be included in any 

quadruplet possessing the PROPERTY; hence it can be 

deleted from consideration with rows 17, 18, 19, 20. We 

also conclude that subset (7,8,11) is maximal with 

respect to the PROPERTY, but (4,8,11) does not. Table 

3 shows the reduced Matrix of Correspondences. 

Table 3 - The reduced Matrix of Correspondences (Reduction 2) 

Subset 8 12 3 7 4 2 

(2,8) 1     1 

Subset 8 12 3 7 4 2 

(3,8) 1  1    

(4,8) 1    1   

(7,8) 1   1   

(2,12)  1    1 

(3,12)  1 1    

(4,12)  1   1  

(7,12)  1  1   

(2,3)   1   1 

(3,4)   1  1  

(3,7)   1 1   

(2,7)    1  1 

(4,7)    1 1  

(2,4)     1 1 

With element 8, the following subsets can be 

constructed: (2,3,8), (2,4,8), (2,7,8), (3,4,8), (3,7,8), 

(4,7,8). But only (2,7,8) possesses the PROPERTY. We 

conclude that it is maximal with respect to the 

PROPERTY. Element 8 can be deleted together with 

rows 21, 22, 23, 24. For element 12, the following 

triplets can be constructed: (2,3,12), (2,4,12), (2,7,12), 

(3,4,12), (3,7,12), (4,7,12). Only (3,7,12), (4,7,12) 

possess the PROPERTY. Since element 12 cannot be 

included in any quadruplet possessing the PROPERTY, 

we conclude that (3,7,12), (4,7,12) are maximal with 

respect to the PROPERTY. Element 12 can be deleted 

together with rows 25, 26, 27, 28. 

Table 4 shows the reduced Correspondent Matrix. In 

this table, (2,3,4,7), the union of all remaining subsets, 

possesses the PROPERTY, hence the process of 

generating subsets is over. 

Table 4 - The reduced Matrix of Correspondences (Reduction 3) 

Subset 3 7 4 2 

(2,3) 1   1 

(3,4) 1  1  

(3,7) 1 1   

(2,7)  1  1 

(4,7)  1 1  

(2,4)   1 1 

Currently, we have constructed 31 + 1 = 32 subsets. 

Without the procedure of winnowing, it is necessary in 

Background Algorithm to form 91 + 38 + 3 = 91 +41 = 

132 subsets, where 91 doublets, 38 triplets, and 3 

quadruplets. The application of winnowing reduced the 

quantity of considered subsets to 123: 91 + 32 = 123. 
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3. A SPECIAL COMBINATORIAL NETWORK FOR 

BACKGROUND ALGORITHM  

The idea of the following algorithm is based on the 

functioning of a combinatory network structure, whose 

elements correspond to subsets of a finite set S 

generated in the algorithm. These elements are located 

in the network along the layers, so that each q - layer 

consists of the elements corresponding to subsets the 

cardinality of which is equal to q. All the elements of q–

layer have the same number q of inputs or connections 

with the elements of previous (q – 1)–level. Each 

element “is excited” only if all the elements of previous 

layer connected with it are active. The weight of 

connection going from the excited element is taken as 

equal to 1; the weight of connection going from the 

unexcited element is taken as equal to 0. An element of 

q–layer is activated if and only if the sum of weights of 

its inputs is equal to q. The possible number Nq of 

elements (nodes) at each layer is known in advance as 

the number of combinations of S on q. In the process of 

the functioning of the network the number of its nodes 

can only diminish. 

An advantage of this network consists in the fact 

that its functioning does not require the complex 

techniques for changing the weights of connections and 

it is not necessary to organize the process of 

constructing q -sets from their (q -1)-subsets. The nodes 

of network can be interpreted depending on a problem 

to be solved. The assigned properties can be checked 

via different attached procedures. 

If an activated node does not possess the assigned 

property, then it is excluded from consideration by 

setting to 0 all connections going from it to the nodes of 

above layer. Non-activated node does not require 

checking whether it possesses the PROPERTY or not. 

The work of this combinatorial network consists of the 

following steps: 

Step 1. The setting of the first layer nodes of 

network to active state, the weights of connections 

leading to the second layer nodes are set equal to 1; 

For each level beginning with the second one: 

Step 2. The excitation of nodes, if they were not 

active and all their incoming traffic (links) have the 

weight equal to 1; checking the assigned property for 

the activated nodes of this layer; 

Step 3. If the assigned property of node is not 

satisfied, then all the outgoing connections of this node 

are established to 0. If the assigned property of node is 

satisfied, then its outgoing connections are set to be 

equal to 1; 

Step 4. The propagation of “excitation” to the nodes 

of the following higher layer (with respect to the current 

one) and the passage to analyzing the following layer; 

Step 5. “The readout” of the active nodes not 

connected with above lying active nodes. Such nodes 

correspond to maximal (not extended) subsets 

possessing a given property. 

 

 

Figure 1 - An example of special combinatorial network 

In Figure 1, all the nodes of two first levels are 

activated but nodes {4,10}, {7,10}, {1,8}, and {1,10} 

do not possess the given property and they have no 

active outgoing links. At the third level, only two nodes 

are activated among which node {4,7,8} does not 

possess the given property. As a result, we have two 

nodes corresponding to maximal subsets possessing the 

given property: {8,10}, {1,4,7}. In the process of 

network activating, only 12 nodes have been checked 

and 14 ones did not require to be checked. 

Apparently, we can see that the size of network may 

be a problem if the data is large. But the decomposition 

of the main problem into sub-problems drastically 

diminishes the memory size of Background Algorithm. 

A subproblem is determined by a subnetwork generated 

by a node of the network. 

Generally, the main advantages of combinatorial 

network are the following ones: 1) the size of network 

is computed in advance; 2) it is possible to decompose 

network into autonomic fragments; 3) different 

fragments of network can be joined via common nodes; 

4) the states of nodes can be established by the use of 

attached procedures; 5) this can be used for problems of 

pattern recognition based on using logical rules 

[Naidenova, 2012]. 

This combinatorial network can be used for solving 

many problems of data mining such that finding 

frequent patterns, association rule mining, discovering 

functional dependencies and some others. The 

application of neural network models for these 
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problems is a new field for investigating. We can refer 

the readers only to one work in this direction related to 

optical neural network model used for mining frequent 

itemsets in large databases [Bhatnager, 2001]. The 

optical neural network model proposes the most 

optimized approach with only one database scan and 

parallel computation of frequent patterns. 

CONCLUSION 

In this paper, we describe an algorithm, called 

Background Algorithm, based on the method of 

mathematical induction. This algorithm is applicable to 

inferring many kinds of logical dependencies from a 

given dataset: implicative and functional dependencies, 

association rules, key patterns and some others. For the 

implementation of this algorithm, we proposed a neural 

network-like combinatorial structure of data and 

knowledge the advantage of which consists in the fact 

that the functioning of it does not require the complex 

techniques for changing the weights of connections. 

The nodes of network can be interpreted depending on a 

problem to be solved. The assigned properties of nodes 

can be checked via different attached procedures. 

Furthermore, the advantages of combinatorial 

network are the following ones: 

 the size of network is computed in advance; 

 it is possible to decompose network into 

autonomic fragments which can operate in a parallel 

way; 

 different fragments of network can be joined 

via common nodes; 

 this network can be used not only for inferring 

logical rules from datasets but also for problems of 

pattern recognition based on these induced rules. 

A model of pattern recognition in which the 

deductive and inductive reasoning rules interact has 

been given in [Naidenova, 2012]. 
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Предложена новая нейроподобная комбинаторная 

структура данных и знаний, увеличивающая 

эффективность алгоритмов символьного машинного 

обучения для вывода различного рода логических 

правил из данных, таких как импликативные и 

функциональные зависимости, ассоциативные 

правила, паттерны, описывающие классы объектов. 

Все перечисленные зависимости генерируются с 

помощью одного и того же алгоритма и одной и той 

же предложенной структуры данных. Данная 

структура также интегрирует задачи вывода правил 

и их использования при распознавании образов. 
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