Augmented reality head-up displays: from requirements to solutions

K. Blankenbach
Pforzheim University, Germany

Abstract

The benefits of head-up displays (HUD) are proven for various applications. Today's automotive HUDs show mostly operational data. This paper discusses requirements of augmented reality (AR) HUDs.

1. Introduction

Many modern cars are equipped with HUDs visualizing mostly speed and directions (Fig. 1 left). Those HUDs have typically a field of view (FOV) of about 8° by $3^{\circ}(\mathrm{h} \times \mathrm{v}$). They base on a projection system using small displays, curved mirrors and a combiner in the windshield [1]. AR-HUDs (Fig. 1 right) will provide more benefits for manual (wayfinding) and autonomous driving (building trust). They require new techniques due to large FOV.

Figure 1: From today's HUD with small field of view (FOV, left) towards AR-HUDs (right) with large FOV. Sources: BMW, MERCEDES, PIONEER
2. Considerations on AR-HUD Field of View The useful AR distance and FOV depends on the "amount" of augmentation and the traffic scenario. The basic parameters for the vertical FOVv and the distance d are visualized in Fig. 2 top:

- Calculation of angles by $\tan (\alpha)=h / d$, where h is the height of the eye, distance d as object to eye
- Minimum distance for urban traffic: $\mathrm{d}_{\min } \sim 5 \mathrm{~m}$
- Maximum distance for highways: $d_{\max } \sim 80 \mathrm{~m}$

With these assumptions, we can calculate the vertical FOV v values from αv according to Fig. 2 top:

- FOVv for look-down from $\alpha v_{\text {min }}-\alpha V_{\text {max }} \approx 15^{\circ}$
- 1° to 2° have to be added system performance.
- Framing cars and annotated information require a look-up angle α viu of at least 5°. This results in a total FOV_{v} of about 20° for highway use cases.
AR augmentation of close objects like shops and traffic signs require at first approach 20° for lookup angle α vu. This results in 40° for vertical FOV.
Corresponding considerations are made for the horizontal FOV ${ }_{H}$ for different scenarios, Fig. 2 bottom:
- Passing a car on highway: $\alpha н \approx 20^{\circ}$, Fig. 1 right
- Urban wayfinding: $\alpha \mathrm{H} \approx 40^{\circ}$
- Annotated information in cities: $\alpha_{H} \approx 60^{\circ}$

This raises the FOV ($\mathrm{h} \times \mathrm{v}$) by more than one order of magnitude compared to present HUDs in series production. So new technologies are required.

Figure 2: Visualization of geometrical conditions for ARHUDs: Vertical (top) and horizontal (bottom) FOV and real object distance d

3. Requirements and Solutions

The optical power output rises with the FOV in approximately linear relation. Expanding from 8° to $60^{\circ}(\mathrm{h})$ and 3° to $40^{\circ}(\mathrm{v})$ results in 100x. The luminance of the HUD's is calculated by

$$
\begin{equation*}
\mathrm{L}_{\text {Lightsource }}=\frac{\mathrm{L}_{\mathrm{HUD}}}{\mathrm{~T}_{\mathrm{x}} \cdot \mathrm{R}_{\mathrm{x}}} \tag{1}
\end{equation*}
$$

Tx represents transmission in the optical path and Rx_{x} for reflectance. The reflectance of holographic combiners is significantly higher (about 85%) thus enabling AR-HUDs, holographic waveguides [2] reduce their volume. The contrast ratio must exceed on bright roads:

$$
\begin{equation*}
C R=\frac{L_{\text {HUD }}}{L_{\text {Road }}}+13: 1 \tag{2}
\end{equation*}
$$

4. Summary

AR-HUDs with a FOV larger than 40° by 10° require holographic methods and highest light output for readability for augmented data on bright background.

5. References

[1] Sako, Ketal, "Development of New Head-Up Display System Utilizing RGBW LCD and Local Dimming Backlight," SID Symposium Digest of Technical Papers, Vol. 47, p. 680-683 (2016).
[2] Richter, Petal, "Volume Optimized and Mirrorless Holographic Waveguide Augmented Reality Head-up Display, " SID Symposium Digest of Technical Papers, Vol. 49, p. 725-728 (2018).

