Bocomasn Meacoynapoonas nayuno-npaxmuueckas kongepenyus «BIG DATA and Advanced Analytics. BIG DATA
U ananu3 8blcoKo2o yposuay, Munck, Pecnyoauxa benapyco, 11-12 mas 2022 200a

UDC [611.018.51+615.47]:612.086.2

INFERENCE OF SHORTEST PATH ALGORITHMS WITH SPATIAL
AND TEMPORAL LOCALITY FOR BIG DATA PROCESSING

st /IS &
A.A. Prihozhy O.N. Karasik
Professor at the Computer and System Software Tech Lead at ISsoft Solutions (part of
Department, Coherent Solutions) in Minsk, Belarus,
Doctor of Technical Sciences, PhD in Technical Science

Full Professor
Belarusian National Technical University

Belarusian National Technical University, Belarus
ISsoft Solutions (part of Coherent Solutions), Belarus
E-mail: prihozhy@yahoo.com, karasik.oleg.nikolaevich@gmail.com

A.A. Prihozhy

Full professor at the Computer and system software department of Belarusian national technical university,
doctor of science (1999) and full professor (2001). His research interests include programming and hardware
description languages, parallelizing compilers, and computer aided design techniques and tools for software and
hardware at logic, high and system levels, and for incompletely specified logical systems. He has over 300 publications
in Eastern and Western Europe, USA and Canada. Such worldwide publishers as IEEE, Springer, Kluwer Academic
Publishers, World Scientific and others have published his works.

O.N. Karasik
Tech Lead at ISsoft Solutions (part of Coherent Solutions) in Minsk, Belarus; PhD in Technical Science (2019).
Interested in parallel computing on multi-core and multi-processor systems.

Abstract. The all-pair shortest paths problem on large-size graphs has many crucial application domains in
science, engineering and economics. Such computer architectures as multi-core systems explore hierarchical memory
consisting of local and shared levels, which differ on memory capacity and data transfer time delays. The cores read
and write data through the fast local caches, therefore running algorithms which support locality in big data
processing are most efficient. The paper develops an inference technique at the aim of creating all-pair shortest paths
algorithms that improve the spatial and temporal reference locality and reduce the cache pressure. It proposes and
transforms a graph-extension-based shortest paths search algorithm that obtains the reference locality properties and
recalculates the lengths of shortest paths at each step of adding a vertex to the graph. Every step of algorithm
transformation introduces additional temporal or spatial locality. Computational experiments carried out on two
types of multi-core processor and on graphs of thousands of vertices have shown about 40% speedup of the proposed
algorithm against the classic Floyd-Warshall one. The proposed algorithm has also shown a gain of 25 — 35% over
the blocked Floyd-Warshall algorithm, which has the property of spatial data locality.

Keywords: multi-core processor; hierarchical memory; cache; shortest paths algorithm; big data; spatial
locality; temporal locality; algorithm transformation; inferring technique.

Problem formulation
Modern multi-core processors have hierarchical memory architecture shown in Figure 1.
Every core has local caches L1 and L2, and all cores have a shared cache L3, which communicates
to main memory. Data may transfer in both directions from core to main memory and vice versa.

56

Bocomasn Meacoynapoonas nayuno-npaxmuueckas kongepenyus «BIG DATA and Advanced Analytics. BIG DATA
U aHanu3 8b1COK020 Yyposuay, Munck, Pecnybauka benapycs, 11-12 mas 2022 200a

Additionally, the cores may transfer data to each other through the shared cache. The memory
capacity increases from L1 to L2, from L2 to L3, and from L3 to main memory. The data transfer
latency increases in the same direction. Larger memory capacities cause higher latency. The data
transfer time in hierarchical memory contributes significantly to the overall execution time of
program.

Cache L1 Cache L1
1 1
Cache L2 Cache L2
1 1
Cache L3

Figure 1. Hierarchical memory of multi-core processor

Locality is a predictable behavior occurring in computer systems. Locality of
reference [1-3] is one of the key principles of constructing computer architectures and developing
high-performance software. It means the access of processor to the same set of memory locations
repetitively over a short period of time. The reference locality can be of two basic types: temporal
and spatial. Temporal locality refers to the reuse of specific data within a relatively small-time
duration. Spatial locality (also known as data locality) refers to the use of data elements within
relatively close storage locations. Spatial locality has a special case termed sequential locality,
which occurs when data elements are arranged and accessed linearly. Traversing elements of a
one- or many-dimensional array allocated in row-major memory layout is an example of sequential
locality. Such techniques as caching, prefetching and branch predicting increase locality of
reference.

A working set of information W(t, 7) of a process at time t is the collection of data referenced
by the process during the time interval (t- 7, t). The working set window dynamically measures the
size of working set and estimates reference locality. If the size matches the cache size, the data
transfer between the cache and the lower-level memory is not high. The data traffic increases when
the active data accede the size of cache. If the working set size is larger than the cache size,
intensive data transfer between the memory levels occurs.

The problem of finding shortest and longest paths in a weighted directed cyclic graph [4 — 7]
has many important practical applications: reducing city traffic, optimizing network infrastructure
in data centers, planning tasks, implementing augmented reality, network analysis,
microelectronics, programming, computer networks, computer games etc. Many algorithms
developed and published in the literature [8-22] solves the problem. Floyd—Warshall’s Algorithm
1 (FW) is a basic one among them. Its computational complexity is O(n®) where n is the number
of graph vertices. Although other algorithms have been developed of lower complexity, the Floyd—
Warshall algorithm has several advantages: it is applicable to a graph containing positive and
negative weights of edges; its space complexity is O(n?) due to the use of a single displacement
array; it has a compact and simple description as a nest of three loops.

57

Bocomasn Meacoynapoonas nayuno-npaxmuueckas kongepenyus «BIG DATA and Advanced Analytics. BIG DATA
U aHanu3 8b1COK020 Yyposuay, Munck, Pecnybauka benapycs, 11-12 mas 2022 200a

Algorithm 1: Floyd-Warshall (FW)

Input: A matrix W of graph edge weights
Input: A size N of matrix
Output: A matrix D of path distances
D«W
for k< 1to N do
fori<« 1toNdo
for j« 1toNdo
sum <« di + d;
if dij > sum then djj < sum
return D

Algorithm 3: Block calculation (BCA)

Input: A size S of block
Input: Blocks B?, B2 and B®
Output: B! — recalculated block
fork < 1toSdo
fori« 1toSdo

Algorithm 2: Blocked Floyd—Warshall (BFW)

Input: A number N of graph vertices
Input: A matrix W of graph edge weights
Input: A size S of block
Output: A blocked matrix B of path distances
M« N/S B[MxM] <« W[NxN]
form« 1toMdo
BCA (Bmm, Bm,m, Bm,m) // DO
fori« 1toMdo
if i # m then
BCA (Bim, Bim, Bmm) /I C1
BCA (Bm,i, Bmm, Bm,) I/ C2
fori« 1toMdo
if i = m then
forj« 1toMdo
if j = m then
BCA (Bij, Bim, Bmj) //P3

forj« 1toSdo return B
sSum <« bzi,k + b3k,j T
if bij > sum then b'jj < sum
return B!
1 te N 1 2 3 4

Figure 2. lllustration of algorithm operation a) Floyd-Warshall; b) Blocked Floyd—Warshall

Observing the Floyd—Warshall algorithm we conclude that each iteration along k accesses
all elements of matrix D. Totally, every element has N attempts to update. The algorithm operation
time crucially depends on which level of memory the matrix D fits completely in. If level L1 or
L2 do, the algorithm runs quickly. If level L3 does, the data transfer time delay is higher, and the
algorithm runs slower. The slowest case takes place when the size of matrix D is larger than the
size of cache L3; elements of D are read from and written to main memory k times, which produces
big cache pressure and consumes too much time.

The blocked Floyd-Warshall (BFW) Algorithm 2 proposed in [13, 14] has changed the
situation. The algorithm introduces spatial locality by decomposing matrix D into blocks of size S
and forming blocked matrix B[MxM], where M = N / S is the number of blocks per row. It provides
sequential data locality for each block. Its main loop has M iterations, S times less compared to

58

Bocbmas Mexcoynapoonas nayuno-npakmuueckas kongepenyus «BIG DATA and Advanced Analytics. BIG DATA
U aHanu3 8b1COK020 Yyposuay, Munck, Pecnybauka benapycs, 11-12 mas 2022 200a

FW. Therefore, every iteration updates each element of the matrix as many as S times, performing
update locally by using one to three blocks simultaneously. Algorithm 3, BCA implements the FW
algorithm, recalculates block B! and consumes two additional blocks B? and B2, It is possible to
choose the block size in such a way as the processed blocks can be deployed in fast caches
simultaneously, which reduces the data traffic between memory levels.

Graph-extension-based shortest paths algorithm

The FW algorithm assumes that a graph G =(V, E) is constructed of vertex set V of
cardinality N and is represented by matrix W of weights. In our graph-extension-based algorithm,
we consider a sequence G(1)... G(k)... G(N) of graphs constructed of 1 to N vertices. We associate
the construction process with stepwise adding vertices to graph G. Matrix D(K) describes distances
between pairs of vertices in graph G(k). We represent our algorithm as a recurrent procedure
(Figure 3) that calculates matrix D(k) from matrix D(k-1) and weights wix and wy; of the edges
connecting the added vertex k to vertices i, j € {1,...,k-1}. The procedure first adds row k and
column k (operation Ax) to D(k-1) obtaining D(k) and then updates (operation Uy) all elements of
D(k-1).

Figure 3. Recurrent procedure of computing distance matrix D(k) from D(k-1)

Equation (1) allows calculating elements dik(k) of column k.

dy (k) = min (d (k-1 +w;,) (1)

Equation (2) allows calculating elements dij(k) of row k.

dy; (k) = iip..il[l—l(wki +d; (k _1)) (2)

Note that element dij(k-1) is common for (1) and (2). Then the procedure carries out operation
U of updating elements of matrix D(k-1) to elements of matrix D(k) using (3):

d, () =min{d, (k=1), d, (k) +d,, (k)| @3)

where i, j € {1,...,k-1}. We describe the calculations represented by (1), (2) and (3) with a graph-
extension-based shortest paths Algorithm 4.

59

Bocomasn Meacoynapoonas nayuno-npaxmuueckas kongepenyus «BIG DATA and Advanced Analytics. BIG DATA
U ananu3 8blcoKo2o yposuay, Munck, Pecnyoauxa benapyco, 11-12 mas 2022 200a

Algorithm 4: Graph-extension-based shortest paths algorithm (GEA)

Input: A matrix W of graph edge weights
Input: A size N of matrix
Output: A matrix D of shortest path distances
D«W
for k< 2toNdo
fori<1tok-1do /I Add Ax
forj«~1tok—-1do
So < dij+djx if dik> So then dik < So
S1 < dki+dij ifdgj>sithen dyj <« s:
fori<1tok-1do /I Update U
forj«~1tok-1do
S2 < dik+dj ifdij>s2thendij« s>
return D

Algorithm 4, GEA obtains new properties compared to FW. The iteration scheme of two
loops along i and j has changed. The loops perform k iterations instead of N ones in FW. They
process submatrices of size [1x1], [2%2], ..., [NxN] in N iterations along k. We can observe that
in contrast to FW, which processes full matrix D[NxN] in each iteration, GEA has the property of
temporal locality. In GEA, the number of body iterations of the most nested loops and the overall
amount of processed data are three times less than those in FW.

Resynchronization of computations in the algorithm

The recurrent procedure is iteratively executed over all vertices of graph G(k) producing a
sequence of pairs of the operations: A1U1—A>U>—...—AnUNn. It is easy to see that the add and update
operations of pair AkUx are incompatible in sense of merging two nests of loops along i and j.
Instead, the operations of pair UkAx+1 are compatible, therefore, it is preferable to use the
resynchronized sequence UiA,—U2As—...—Un1An—Un considering that A; is replaced by a zero
initialization of matrix D(1). In the Ux.1A« pair, operation Uk-1 is a delayed update of matrix D(k-
1), which is carried out simultaneously with the addition Ax of row k and column k.

Algorithm 5 represents GEA after resynchronization of the add and update operations. The
pseudocode consists of two nests of loops. The first nest has the depth of three loops, and the
second nest has the depth of two loops. The first nest consists of a loop along k of N iterations
whose body includes two sequential nests each of two loops along i and j. In the first nest, which
performs operation U1 by using one addition +, one comparison > and two assignments, the loops
along i and j have k-1 iterations each, and in the second nest, which performs operation Ak by using
two additions +, two comparisons > and four assignments, the loops have k iterations each.
Algorithm 5 finalizes computation of matrix D by performing the update operation Un, which is
realized by the nest of two loops along i and j having N-1 iterations each. A drawback of the
algorithm is the use of two nests of loops to perform operations Uk.1 and Ak sequentially.

60

Bocomasn Meacoynapoonas nayuno-npaxmuueckas kongepenyus «BIG DATA and Advanced Analytics. BIG DATA
U ananu3 8blcoKo2o yposuay, Munck, Pecnyoauxa benapyco, 11-12 mas 2022 200a

Algorithm 5: GEA after resynchronization of computations

Input: A matrix W of graph edge weights
Input: A size N of matrix
Output: A matrix D of shortest path distances
D«W
for k< 2to N do
k1< k-1
fori< 1tokl-1do /I Update Uy
forj« 1tokl-1do
Sy« ikt + dij ifdij>sathendij« s
fori<« 1tokldo /I Add A
forj« 1tokldo
So < dij+ djx if dix > So then dik < So
S« dyi+dij ifdgj>sithen dj <« s1
k1< N
fori« 1tokl-1do /I Update Un
forj« 1tokl-1do
S2 ¢« dija + dij ifdij>s2 then dij« sz
return D

Merging loops in the algorithm
In Algorithm 5, two nests of loops along i and j are different for operations Ux.1 and Ak upon
the right bound of iteration scheme. For the first nest, the bound is k1 — 1, and for the second nest
it is k1. Nevertheless, the transformed Algorithm 6 has merged the nests using the right bound of
k1 in such a way as to keep the correctness of calculations. Algorithm 6 differs to Algorithm 5 by
additional iterations of two loops and by additional execution of two statements

2 < i1 + diej; if dij > sz then dij < 2

which implement operation Uk.1. We describe the additional iterations with two cases.
Case 1:i=klandj=1,....k1. The two statements are reduced to

2 «— Oi k1 + diej; if disj > S2 then diej < S2;

Since equality dkik1 = 0 holds and sz = dkuj, the value of dij = dkij keeps unchanged.
Case 2: j=klandi=1,....,kl. The two statements are reduced to

S2 < dik1 + diakt; if dika > 52 then dix < S2;

Since equality dkik1 = 0 holds and sz = diki, the value of di;j = dix:1 also keeps unchanged.

Our conclusion is the additional loop iterations in Algorithm 6 does not affect the D matrix
state. Therefore, Algorithms 5 and 6 are functionally equivalent.

The advantages of Algorithm 6 are as follows. First, it eliminates two nested loops and
reduces CPU time on implementing the iteration schemes. Second, it increases temporal reference
locality due to three references to the same variable d;; in three subsequent statements which
calculate and consume values of variables sz, So and ss.

Figure 4 illustrates the operation of Algorithm 6, which is different to the operation of
Algorithm 4. Algorithm 4 references the row and column indexed by k. Algorithm 6
simultaneously references two rows and two columns indexed by k—1 and k. Algorithm 4

61

Bocvmas Mescoynapoonas nayuno-npakmuyeckas kongepenyus «BIG DATA and Advanced Analytics. BIG DATA
U aHanu3 8b1COK020 Yyposuay, Munck, Pecnybauka benapycs, 11-12 mas 2022 200a

calculates the row k and column k upon elements of matrix D(k—1) and then updates elements of
D(k-1) upon row k and column k to obtain matrix D(k). Algorithm 6 updates elements of matrix
D*(k—2) upon row k-1 and column k-1 and calculates the row k and column k of matrix D*(k)
upon elements of matrix D*(k-1) for which D*(k-2) is a part. Matrix D(k) produced by operations
Uk and Ak in Algorithm 4 differs from matrix D*(k) produced by operations UxAk+1 In
Algorithm 6.

Improving spatial reference locality in cache

In Algorithm 6, the nest of three loops along k, i and j carries out operations Uk-1 and Ax
upon matrix D. The algorithm calculates variables s2, sO and s1, and matrix elements dij, dik and
dk,j upon elements dix1, dk,j, dij, djk and dk,. To do this, it traverses columns k-1 and k, and rows
k-1, k and i multiple times. The rows provide sequential locality and low data transfer in the
hierarchical memory. The column elements deployed to different lines and referred many times in
nested loops increase the data traffic in hierarchical memory. To avoid the increase, our solution
is to preliminary collect the elements in a one-dimensional array, which provide sequential
reference locality, and then to access the elements many times.

Algorithm 7 inferred from Algorithm 6 implements our solution. It explores three additional
one-dimensional arrays for collecting elements of two columns of matrix D: array c1 corresponds
to updated column k-1, array w corresponds to initial column k, and array ¢ corresponds to column
k that is to be updated. Moreover, it uses references to three rows of matrix D: rl refers to row k-
1; r refers to row k; ri refers to row i. Function getRow(D, k) returns the address of row k of matrix
D. To further speed up the computations, we have implemented Algorithm 7 by means of pointers
of the C programming language.

Algorithm 6: GEA after merging loops

Input: A matrix W of graph edge weights
Input: A size N of matrix
Output: A matrix D of shortest path distances
D« W
fork <~ 2toNdo
ki< k-1
for i<« 1tokldo
for j<« 1tokldo
Sp ¢ ikt + drj ifdij>s2thendij<«s; // Update Uit
Sp < di,j + dj,k ifdik>sothendixk<«so // Add Ax
Sp <« Oy + di,j if dk,j > 5; then dk,j « s /I Add Ax
k1< N
fori<1tokl-1do
forj«1tokl-1do
Sy < O + dkl,j if di,j > s, then di,j «— S /I Update Uy
return D

Figure 4. Resynchronized recurrent procedure of computing D(k) from D(k-1)

62

Bocomasn Meacoynapoonas nayuno-npaxmuueckas kongepenyus «BIG DATA and Advanced Analytics. BIG DATA
U ananu3 8blcoKo2o yposuay, Munck, Pecnyoauxa benapyco, 11-12 mas 2022 200a

Algorithm 7: GEA after improving spatial locality

Input: A matrix W of graph edge weights
Input: A size N of matrix
Output: A matrix D of shortest path distances
DWW cli<o w<«di
for k< 2toNdo
k1< k-1 r<« getRow(D,k) rl« getRow(D, k1)
fori<« 1tokldo
min <~ o ri « getRow(D, i)
forj« 1tokldo
Sy« cli+rl; ifrij>s;thenrij« s /I Update Uk
So « rij+w;j if min > so then min « so /I Add

Sy« ri+rij ifdgj>sithen dj < s1 /I Add A
Ci < min
fori<« 1tokldo
clidixk<Ci Wi« diks
if K <N then wi < dix+1
k1<« N rl « GetRow(D, k1)
fori«< 1tokl-1do
ri < getRow(D, i)
forj« 1tokl-1do
S2<cli+rl; ifrij>sythenrij« s, /I Update Uy
return D

Comparison of proposed and Floyd-Warshall algorithms
The iteration scheme of loops along i and j of GEA differs from those of FW. In FW, the
overall number of iterations of the most nested loop is N°. In GEA, the overall number of iterations
of the loop is m = 12 + 22 + 32 +.. .+ N2, Equation (4) evaluates the ratio p = N3/ .

P=B e +neB+1/6)~ Hora/B1/8?) @

When N — o, the ratio p — 3. In this case, GEA has the overall number of iterations in the
most nested loop of N3/ 3, which is three times less than in FW.

FW updates N? matrix elements in each iteration of the loop along k. It recalculates totally
N3 values. GEA successively updates matrices D[1x1], D[2x2], ..., D[NxN] of the increasing size.
The overall number of updated matrix elements is N*/ p. It is equal to N®/3 when N — oo,
Comparing GEA against FW, we can conclude that the first algorithm is better than the second one
regarding both the number of loop iterations executed, and the amount of data processed.

Experimental results

We have implemented the FW, BFW and GEA algorithms [23-28] in the C language,
compiled them into single-thread applications using Visual Studio 2019 Community Edition
(MSVC++ 14.29) with «Release» configuration and O2 optimization level, and carried out
computational experiments on two processors: P1 — Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz
and P2 — Intel(R) Core(TM) i5-5200U @ 2.70GHz. The single-thread applications allow
evaluating the influence of spatial and temporal locality in cache hierarchy (not the effect of
parallel behavior) on the algorithm throughput. Table 1 reports the memory capacity of caches L1,
L2 and L3, the processor frequency and the number of cores. We have used randomly generated
complete graphs whose size N varies from 400 to 3600 vertices. Algorithms FW and GEA operated

63

Bocomasn Meacoynapoonas nayuno-npaxmuueckas kongepenyus «BIG DATA and Advanced Analytics. BIG DATA
U ananu3 8blcoKo2o yposuay, Munck, Pecnyoauxa benapyco, 11-12 mas 2022 200a

on non-blocked matrix D[NxN]. Algorithm BFW operated on blocked matrix B[8x8] at various
graph size. Table 2 and Table 3 report CPU-time the algorithms have consumed while running on
processors P1 and P2 respectively. We can observe that the algorithms have consumed about twice
larger time on P2 against P1. Since the processors have almost the same frequency, the gain of P1
over P2 is due to the times larger size of caches. We can also observe that BFW is faster than FW,
and GEA is faster than both FW and BFW. Figure 5 shows the speedup of BFW and GEA against
FW on each of the P1 and P2 processors. GEA is faster to FW from 38.92 % to 40.10 % on P1, and
from 27.23 % to 42.22 % on P2. As for BFW, it is faster to FW only from 5.93 % to 13.04 % on
P1, and from 3.40 % to 14.39 % on P2.

Table 1. Processor parameters

Processor L1 L2 L3 Frequency | Cores
Intel(R) Core(TM) i7-10700 CPU 0.5 MB 20MB | 16.0MB | 2.9 GHz 8
Intel(R) Core(TM) i5-5200U 0.2 MB 0.5 MB 3.0 MB 2.7 GHz 2

Table 2. CPU time (millisecond) of algoritms FW, BFW and GEA on P1 - Intel(R) Core(TM) i7-
10700 CPU @ 2.90GHz vs. graph size

) Graph size N
Algorithm 405 | 00 | 1200 | 1600 | 2000 | 2400 | 2800 | 3200 | 3600
FW 118 | 925 | 3162 | 7148 | 13745 | 24080 | 38196 | 57141 | 81752
BFW 111 | 839 | 2805 | 6459 | 12318 | 21605 | 34248 | 50156 | 71092
GEA 72 | 565 | 1894 | 4358 | 8365 | 14518 | 23283 | 34383 | 49040

Table 3. CPU time (millisecond) of algoritms FW, BFW and GEA on P2 - Intel(R) Core(TM) i5-
5200U @ 2.70GHz vs. graph size

_ Graph size N
Algorithm 1 400 | 800 | 1200 | 1600 | 2000 | 2400 | 2800 | 3200 | 3600

FW 235 | 1962 | 6402 | 15086 | 29262 | 49163 | 79580 | 117717 | 157617
BEW 227 | 1856 | 6101 | 14185 | 25372 | 42086 | 70041 | 105143 | 142021
GEA 171 | 1205 | 3992 | 9435 | 18574 | 28407 | 47812 | 69812 | 94309

50,00

40,00 9o o —F—-—

30,00 A,/

20,00

10,00 _e-—-- 7..’.'*:-_--_-:r::‘.t---ﬂ-‘.".:.:

p S s
0,00

0 500 1000 1500 2000 2500 3000 3500 4000

- -@ - BFW/FW - P1 —@— GEA/FW - P1
---&--- BFW/FW - P2 — & - GEA/FW - P2

Figure 5. Speedup (%) of GEA (solid) and BFW (long dash) over FW on
Intel(R) Core(TM) i7-10700 CPU @ 2.90GHz, and speedup of GEA (dash) and BFW
(square dot) over FW on Intel(R) Core(TM) i5-5200U @ 2.70GHz

64

Bocomasn Meacoynapoonas nayuno-npaxmuueckas kongepenyus «BIG DATA and Advanced Analytics. BIG DATA
U ananu3 8blcoKo2o yposuay, Munck, Pecnyoauxa benapyco, 11-12 mas 2022 200a

Conclusion

The Floyd-Warshall algorithm does not use the spatial and temporal reference locality. The
blocked Floyd—Warshall algorithm was created to introduce the spatial locality while calculating
the matrix of shortest path distances. Our experiments have shown that modern multicore
processors and their hierarchical caches do not explore this locality effectively. In the paper we
have proposed the technique of inferring and transforming shortest paths algorithms. It extracts in
stepwise manner both spatial and temporal reference locality, increases the efficiency of
processing big data on modern multi-core systems, and reduces the algorithm run-time
dramatically. The technique is capable of inferring algorithms for solving other large-scale
problems on state-of-the-art multi-processor systems.

References

[1] Denning, P.J. The Locality Principle. Communications of the ACM, Volume 48, Issue 7, (2005), Pages 19—
24,

[2] Prihozhy A.A. Simulation of direct mapped, k-way and fully associative cache on all pairs shortest paths
algorithms. System analysis and applied information science. — 2019, No. 4, pages 10-18.

[3] Prihozhy A.A. Optimization of data allocation in hierarchical memory for blocked shortest paths
algorithms. System analysis and applied information science. — 2021, No. 3, pages 40-50.

[4] Anu, P., Kumar, M. G. Finding All-Pairs Shortest Path for a Large-Scale Transportation Network Using
Parallel Floyd-Warshall and Parallel Dijkstra Algorithms. Journal of Computing in Civil Engineering. — 2013. —
Vol. 27, Ne. 3. — P. 263-273.

[5] Wang, L. [et al.]. Floyd-Warshall all-pair shortest path for accurate multi-marker calibration. 2010 IEEE
International Symposium on Mixed and Augmented Reality. — Seoul, South Korea: IEEE, 2010, pp. 277-278.

[6] Ridi, L., Torrini, J., Vicario, E. Developing a Scheduler with Difference-Bound Matrices and the Floyd-
Warshall Algorithm. IEEE Software. — 2012. — Vol. 29, Ne. 1. — P. 76-83.

[7] Prihozhy, A.A., Mattavelli, M., Mlynek, D. Data dependences critical path evaluation at C/C++ system
level description. International Workshop PATMOS'2003, Springer, Berlin, Heidelberg. — 2003, pp. 569-579.

[8] Floyd, R.W. Algorithm 97: Shortest path. Communications of the ACM, 1962, 5(6), p.345.

[9] Madkour, A, Aref, W.G., Rehman, F.U., Rahman, M.A., Basalamah, S. A Survey of Shortest-Path
Algorithms. ArXiv:1705.02044v1 [cs.DS] 4 May 2017, 26 p.

[10] Pettie, S., , Ramachandran, V. Computing shortest paths with comparisons and additions. Proceedings of
the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 2002, pp. 267-276.

[11] Pettie, S. A new approach to all-pairs shortest paths on real-weighted graphs. Theoretical Computer
Science. 312 (1), 2004: 47-74.

[12] Seidel, R. On the All Pairs Shortest paths Problem in Unweighted Undirected Graphs. Journal of Computer
and System Sciences. 51 (3), 1995, pp. 400-403.

[13] Venkataraman, G., Sahni, S., Mukhopadhyaya, S. A Blocked All-Pairs Shortest Paths Algorithm. Journal
of Experimental Algorithmics (JEA), Vol 8, 2003, pp. 857-874.

[14 TPark, J.S., Penner, M., and Prasanna, V.K. Optimizing graph algorithms for improved cache performance.
IEEE Trans. on Parallel and Distributed Systems, 2004, 15(9), pp.769-782.

[15] Albalawi, E., Thulasiraman, P., Thulasiram, R. Task Level Parallelization of All Pair Shortest Path
Algorithm in OpenMP 3.0. 2nd International Conference on Advances in Computer Science and Engineering (CSE
2013), 2013, Los Angeles, CA, July 1-2, 2013, pp. 109-112.

[16] Tang, P. Rapid Development of Parallel Blocked All-Pairs Shortest Paths Code for Multi-Core Computers.
IEEE SOUTHEASTCON 2014, pp. 1-7.

[17] Solomonik, E., Buluc, A., and Demmel, J. Minimizing Communication in All Pairs Shortest Paths IEEE
27th International Symposium on Parallel & Distributed Processing, 2013, pp.548-559.

[18] Singh, A., Mishra, P.K. Performance Analysis of Floyd Warshall Algorithm vs Rectangular Algorithm.
International Journal of Computer Applications, VVol.107, No.16, 2014, pp. 23-27.

[19] Madduri, K., Bader, D., Berry, J.W., Crobak, J.R. An Experimental Study of a Parallel Shortest Path
Algorithm for Solving Large-Scale Graph Instances / K Madduri, // Proceedings of the Ninth Workshop on Algorithm
Engineering and Experiments (ALENEX), 2007, pp.23-35.

[20] Mpsrxoxsl, A. A., Kapacik, A. M. KaanepatsiyHbis 67109Ha-TIapaneabHBIA aTapbITMBI PAIIHHS 33124 Ha
mMart'sapasbix cicraMax. CHCTeMHbII aHaIu3 U npukiaaHas uapopmaruika. — 2015. — Ne 2. — C. 10-18.

[21] Kapacuxk, O. H., ITpuxoxuii, A. A. IIoTOKOBBIH 06J0YHO-TIApaJUIETBHBIN aNTOPUTM ITIOMCKA KpaTdaimmx
nyteid Ha rpade. Hoknaast BI'YUP. — 2018. — Ne 2. — C. 77-84.

65

https://archive.org/details/proceedingsofthi2002acms/page/267
https://archive.org/details/proceedingsofthi2002acms/page/267

Bocomasn Meacoynapoonas nayuno-npaxmuueckas kongepenyus «BIG DATA and Advanced Analytics. BIG DATA
U ananu3 8blcoKo2o yposuay, Munck, Pecnyoauxa benapyco, 11-12 mas 2022 200a

[22] Ipuxoxwuii, A. A. PazHOpoaHEIiT OJOYHEIA aNrOPUTM ITOMCKA KpaTIaHIINX ITyTeH MEXIY BCEMH MapaMu
BepmmH rpada / A. A. Ilpuxoxwuii, O. H. Kapacuk // CuctemHbIi aHanmm3 u npukianHas nHGopmarmka. — Ne 3. —
2017.— C. 68-75.

[23] [Tpuxoxuit, A.A., Kapacuk, O.H. HcciaenoBanue MEeToA0B peaan3allii MHOTOTIOTOUHBIX MPUIOKEHUHN Ha
MHOTOsIIEpHbIX cucreMax. iHpopmaTuzamms odpasosanus. — 2014, Ne 1, c. 43-62.

[24] IMpuxoxuii, A.A. Pacnpenenennas u napauienbHas oopaborka qanusx. — Munck: BHTY, 2016. — 90 c.

[25] TIpuxoxwuii, A.A., Kapacuk, O.H. KoonepaTuBHasi MoAenb ONTUMHU3ALMU BBITIOJHEHUS! MOTOKOB Ha
MHOTOs1IepHO#i cucteme. CHCTEMHBII aHau3 U npuKiIagHas uadopmaruka, 2014, Ne 4, c. 13-20.

[26] Kapacuk, O. H., Ilpuxoxwuii, A. A. VYcCOBepLICHCTBOBaHHbIN IUIAHUPOBIIMK KOONEPATUBHOIO

BBITIOJTHEHHS TTOTOKOB Ha MHOTOsIepHOH cucTteme. CHCTEMHBIN aHAIHM3 U IpUKiIagHas Matematnka. — 2017, — Ne 1, —
C.4-11.

[27] Prihozhy, A.A. Asynchronous scheduling and allocation. Proceedings Design, Automation and Test in
Europe. Paris, France. — IEEE, 1998, pp. 963-964.

[28] Prihozhy, A.A. Analysis, transformation and optimization for high performance parallel computing.
Minsk: BNTU, 2019. — 229 p.

BBIBOJI AJITOPUTMOB NIONCKA KPATUANIIUX IYTEN C BPEMEHHOM
U MPOCTPAHCTBEHHOH JIOKAJIBHOCTBIO J1JI51 OBPABOTKHA

BOJIBIINX JTAHHBIX
A.A. [IPUXOXHH O.H. KAPACHK
Ilpogpeccop rkagpedpul «llpoepammmuoe Beoywuii umoicenep unocmpantozo
obecneuerue UHDOPMAYUOHHBIX CUCIEM U NPOU3B00CMBEHHO20 YHUMAPHOZO
mexuonoautly benopycckozo HayuonanvHoz2o npeonpusmus « ACCODPT COJIFOLIIEH3»
MmexHuyecko2o yHueepcumema, 0.m.H., (IIBT, . Muncx),
npogeccop K.M.H.

benapyckuii nayuonanvnulii mexnuueckui ynueepcumem, benapyco
HCcogpm Comowenc (vacme Koxepenm Comowenc), benapyce
E-mail: prihozhy@yahoo.com, karasik.oleg.nikolaevich@gmail.com

AHHOTANMA. 3a0aua o noucke Kpamuauuiux nymeu mexcoy 6cemu napamu 6epuuH 2paga 6016ui020 pasmepa
uMeem MHONCeCMB0 BANCHBIX NPUKIAOHBIX 0Daacmell 8 HaYKe, MeXHUKe U IKOHOMUKe. B maxkux komnblomepHsix
aApXUmMeKmypax, Kax MHO2050epHble CUCIEMbL, UCNONb3YENCA UepapXUecKas NAMamb, COCMOAWAsA U3 IOKAIbHbIX U
paszoensiemMvlx YposHell, KOmopbvle paziuyarmcs 00vbeMomM U 8PeMEHHbIMU 3a0epAuCKAMU nepedayu OaHHuix. HAopa
YUMAOm U 3anUCbl8aiom OaHHble Yepe3 ObiCmpble JOKANbHbIE KUY, NOIMOMY AN20PUMMbL, HOO0ePICUBAIOUUE
JIOKAbHOCMb Npu 06pabomie OOMbuIUX OAHHBIX, Hauboree 3Pppexmuenvl. B cmamee paspabameisaemcs memoo
@opmanvro2o 6616004, HANPABIEHHYIIL HA CO30AHUE AN2OPUMMOB HOUCKA KPAMHUAUWUX HYymel, KOMopble Yayuuaiom
NPOCMPAHCMBEHHYI0 U BPEMEHHYIO JIOKANbHOCMb CCHLIOK U CHUdMCAlOm Hazpy3ky Ha kowl. Ilpednacaemcsa u
MPAHCHOPMUPYEMCA ANOPUMM ROUCKA KPAMUAUWUX Nymel, NOCMPOEHHbll HA OCHO8e pacuiupenus zpaga,
KOmopwlil 0061a0aem ceolucmeamu JIOKAIbHOCIU CCbUIOK U NEPecyumolédaen OIuHbl KpAmuauuiux nymei npu Kaicoom
dobaesnenuu eepuiunst K epagy. Kasicovii wae npeobpazosanus anreopumma HOCUM OONOTHUMENLHYIO DEMEHHYIO
UnU NPOCMPAHCMBEHHYIO JOKANBHOCMb. Bvluuciumenvuvie dKcnepumenmol, nposedeHHvle HA 08YX MUNAX
MHO20510epHbIX NPOYeccopo8 u HA zpagax u3 moulcAy eepuiur, noxazanu npumepro 40 % nosviuenue
nPoU3600UMENLHOCIU NPEOIONCEHHO20 ANOPUMMA NO CPAGHEHUI0 ¢ Kiaccudeckum anzopummom @uouoa-
Yopwanna. Ilpeonoocennwiti ancopumm maxdce noxasan eviuepvius 6 25-35 % no cpaenenuio ¢ OI0UHBIM
aneopummom @uouda-Yopwania, odradarouwum c6OUCMEOM NPOCMPAHCMEEHHOU TOKANLHOCHU OAHHDIX.

KaioueBble c10Ba: MHO205I0epHUL NpOYeCcop, uUepapxudeckas NAMAMb, KIW, aiecopumm HOUCKA
Kpamuatwux —nymeil;, 0Oonvuwiue Oanuvle, NPOCMPAHCMBEHHAS JOKAIbHOCHb, 8DEMEHHASl JIOKANbHOCHb,
npeobpaszosanue aneopummd; opmanrbHblll 6b1800.

66

http://scholar.google.com/scholar?cluster=13501638488297176683&hl=en&oi=scholarr
http://scholar.google.com/scholar?cluster=13501638488297176683&hl=en&oi=scholarr
https://cyberleninka.ru/article/n/15992345
https://cyberleninka.ru/article/n/15992345

