УДК 004.925.8

СОЗДАНИЕ ТОПОЛОГИЧЕСКОЙ ПОВЕРХНОСТИ ЛЕНТЫ МЁБИУСА В AUTODESK INVENTOR

Родевич Р.А, Пинчук Е.П.

Белорусский государственный университет информатики и радиоэлектроники, г. Минск, Республика Беларусь

Научный руководитель: Гиль С.В. – канд.техн.наук, доцент, доцент кафедры ИКГ

Аннотация. В статье представлена историческая справка об открытии топологической поверхности под названием «Лента Мёбиуса», которая является односторонней плоскостью в трёхмерном пространстве. Представлены примеры использования её в приборах, технике и производстве. Разработан алгоритм создания параметризованной твердотельной модели этой топологической поверхности в *Autodesk Inventor*.

Ключевые слова: топологическая поверхность, Лента Мёбиуса, Autodesk Inventor

Введение. Лента Мёбиуса – простейшая неориентируемая поверхность, которая является односторонней в трёхмерном пространстве (рисунок 1). Её часто называют ещё поверхностью Мёбиуса и относят к непрерывным (топологическим) объектам [1]. Топологией является раздел математики, изучающий свойства пространства, которые остаются неизменными при непрерывных деформациях [2]. Представляет интерес история открытия этой поверхности, её практическое применение, а также возможность создания её твердотельной модели средствами Autodesk Inventor.

Основная часть. Считается, что лента Мёбиуса была открыта независимо немецкими математиками Августом Фердинандом Мёбиусом и Иоганном Бенедиктом Листингом в 1858 году, хотя похожая структура изображена на римской мозаике III века н.э. (рисунок 3) [1].

Рисунок 1 – Компьютерная модель Ленты Мёбиуса

Рисунок 3 – Римская мозаика (III век)

Рисунок 2 – Ручное изготовление Ленты Мёбиуса

Рисунок 4 - Памятник Ленте Мёбиуса в Минске

22 января 2009 года в Минске был открыт памятник Ленте Мёбиуса к восьмидесятилетнему юбилею Национальной академии наук Беларуси. Сегодня лист Мёбиуса и его свойства широко применяются в науке, служа основой для построения новых гипотез и теорий, проведения исследований и экспериментов, создания новых механизмов и устройств.

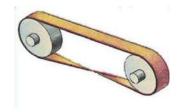


Рисунок 5 – Триод

Рисунок 6 - Шлифовальная лента на основе ленты Мёбиуса

Патентные службы вынуждены были познакомиться с поразительными свойствами листа Мёбиуса - в разное время и в разных странах зарегистрировано немало изобретений, в основе которых лежит все та же односторонняя поверхность. Например, в 1923 году знаменитый американский изобретатель Ли де Форест, который придумал трёхэлектродную лампу - триод (рисунок 5), предложил записывать звук на киноленте без перемены катушек, сразу «с двух сторон». Ему выдали патент № 1442632. В 1969 году советский изобретатель А. Губайдуллин получил авторское свидетельство № 236278 на бесконечную шлифовальную ленту (рисунок 6), работающую обеими своими сторонами. Он предложил натянуть сделанную из специального материала ленту Мебиуса на два вращающихся ролика и покрыть ее крупинками твердого абразива. Понятно, что такая лента служит вдвое больше обычной. В 1923 году выдан патент изобретению Ли де Форсу, который предложил записывать звук на кинопленке без смены катушек, сразу с двух сторон (рисунок 8). На основе исследований поверхности ленты Мебиуса и ее свойств было создано множество устройств и приборов. К примеру, кассеты для магнитофона, где лента перекручивается и склеивается в кольцо, при этом появляется возможность записывать или считывать информацию сразу с двух сторон, что увеличивает ёмкость кассеты и соответственно время звучания. Форму ленты Мёбиуса повторяют при создании полосы ленточного конвейера (рисунок 7) и красящей ленты в печатных устройствах, абразивных ремней для заточки инструментов и автоматической передачи. Это позволяет значительно увеличить срок их службы, так как изнашивание происходит более равномерно [4].

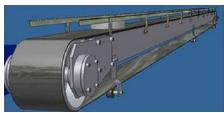


Рисунок 8 – Кассеты для магнитофона

Модель ленты Мёбиуса можно легко сделать из бумаги: надо взять достаточно длинную бумажную полоску и склеить противоположные концы полоски в кольцо, предварительно перевернув один из них (рисунок 2). Однако создание топологической поверхности ленты Мёбиуса в *Autodesk Inventor* представляет собой более трудоемкий процесс.

Для построения твердотельной модели данной топологической поверхности необходимо создать семь плоских 2D-эскизов, не только в основных плоскостях, но и в дополнительных рабочих плоскостях, которые ориентированы относительно плоскости XY под 15 и 45 градусов и зеркально отражены. Создаваемая компьютерная модель ленты Мёбиуса является параметризованной, описывается предварительно рядом параметров, которые многократно повторяются в эскизах и являются строго фиксированными: ширина ленты - задаётся длиной

отрезка; диаметр траектории ленты — задаётся окружностью; привязка отрезка — ширины ленты, задаётся радиусом. Предварительно на эскизе воспроизводится траектория движения ленты - окружность. На вспомогательных и основных плоскостях командой «Отрезок» создаются 2D-эскизы с заданными параметрами, при этом особое внимание необходимо обратить на правильную ориентацию ширины ленты относительно траектории движения и её плавный перегиб. Непосредственно поверхность формируется командой «Лофт» путем последовательного добавления эскизов, в качестве направляющей задаётся траектория движения ленты - окружность. Твердотельная модель воспроизводится из поверхности командой «Толщина» с двунаправленной ориентацией, далее назначается материал и текстура (Рисунок 9) [3].

Рисунок 9 – Поэтапное создание трёхмерной модели ленты Мёбиуса, выполненной в Autodesk Inventor

Заключение. В соответствии с разработанным алгоритмом средствами Autodesk Inventor создана параметризованная твердотельная компьютерная модель топологической поверхности Ленты Мёбиуса, представляющей научный интерес вследствие её достаточно широкого практического применения в различных сферах.

Список литературы

- 1. Лента Мёбиуса [Электронный ресурс].- Режим доступа: https://ru.wikipedia.org/wiki/
- 2.Лента Мёбиуса: один из самых необычных объектов с очень странными свойствами [Электронный ресурс].- Режим доступа: https://zen.yandex.ru/media/popsci/lenta-mebiusa-odin-iz-samyh-neobychnyh-obektov-s-ochen-strannymi-svoistvami-5c0cca8d44c73500ae939655
- 3. Поверхностное моделирование: Лента Мёбиуса [Электронный ресурс].- Режим доступа https://www.youtube.com/watch?v=ibfeqaRuLl8a
 - 4. Лист Мёбиуса и его применение [Электронный ресурс].- Режим доступа: https://school-herald.ru/ru/article/view?id=897

UDC 004.925.8

CREATING THE TOPOLOGICAL SURFACE OF THE MOBIUS STRIP IN AUTODESK INVENTOR

Rodevich R.A., Pinchuk A.P.

Belarusian State University of Informatics and Radioelectronics, Minsk, Republic of Belarus

Gil S.V. - PhD, assistant professor, associate professor of the department of ECG

Annotation. The article presents a historical background on the discovery of a topological surface called "Mobius strip", which is a one-sided plane in three-dimensional space. Examples of its use in devices, technology and production are presented. An algorithm for creating a parametrized solid model of this topological surface in Autodesk Inventor has been developed.

Keywords: Topological Surface, Mobius strip, Autodesk Inventor