
156 
 

A. Ivashkevich, A. Buryy, E. Ovsiyuk, V. Balan, V. Kisel, V. Red’kov 
B. I. Stepanov Institute of Physics,  

National Academy of Sciences of Belarus, Minsk, Belarus 
 

ON THE MATRIX EQUATION FOR A SPIN 2 PARTICLE  
IN PSEUDO-RIEMANNIAN SPACE-TIME  

 
After the study by Pauli and Fierz [1, 2], the theory of massive and 

massless fields with spin 2 has always attracted much attention [3–13]. 
Most of the studies were performed in the framework of 2-nd order differ-
ential equations. It is known that many specific difficulties may be avoided 
if from the very beginning we start with 1-st order systems. Apparently, the 
first systematic study of the theory of spin 2 fields within the first order 
formalism was done by F. I. Fedorov [4]. It turns out that this description 
requires a field function with 3 independent components. This theory was 
re-discovered and improved by Regee [5]. In the present paper we develop 
the theory of the spin 2 field, in both massive and massless variants, start-
ing from the matrix equation in Minkowski space-time and extending it to 
the generally covariant theory within the Tetrode-Weyl-Fock-Ivanenko tet-
rad method.  

We start with the known system of the first order equations for a mas-
sive spin 2 particle:  
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a b
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∂ Φ − ∂ Φ + ∂ Φ − ∂ Φ = Φ ,            (1) 

 
where the field variables are scalar, vector, symmetric 2-rank tensor, and  
3-rank skew-symmetric in two first indices tensor, im M= . By excluding 
the vector and the 3-rank tensor, we obtain the 2-nd order equations with 
respect to the scalar and symmetric tensor:  
 

2
( )0 ( ) 0abMΦ = , + Φ = ,     ( ) ( ) ( )0 0a k

ab ba a kaΦ = Φ , Φ = , ∂ Φ = .       (2) 
 
In massless case, the first order system reads  
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1 10
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a b
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1 1 1 0
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∂ Φ + ∂ Φ − ∂ Φ + ∂ Φ + ∂ Φ − ∂ Φ = ,  

( ) ( ) ( ) ( ) [ ]
1
3

k k
a bc b ac bc ak ac bk ab cg g 

 
 

∂ Φ − ∂ Φ + ∂ Φ − ∂ Φ = Φ .            (3) 

 
From (3) we derive the 2-nd order equations for the massless field:  
 

( )
11 0
32

k l
klΦ − ∂ ∂ Φ = ,  

( ) ( ) ( )
1 1( ) 0
2 4

c l l
a b ab ab c ab a bl b alg g∂ ∂ + Φ − Φ + Φ − ∂ ∂ Φ − ∂ ∂ Φ = .         (4) 

 
Massless equations have a class of gauge solutions:  

 

( )
1
2

l l
abl a b b a ab lL L L g LΦ = ∂ , = ∂ + ∂ − ∂ ,Φ                 (5) 

 
where ( )lL x  stands for an arbitrary 4-vector. These special states do not 
contribute to physically observable quantities, like the energy-momentum 
tensor. The concomitant gauge components are as follows:  
 

[ ]
1 1 ( )
3 3 3 3

l lcb a ca b cb a ca b
a ab ca l a c a b b a l

g g g L g LL L L L L∂ − ∂ −
= ∂ ∂ − , = ∂ ∂ − ∂ − ∂ + .Φ Φ   (6) 

 
The system (1) can be re-written in equivalent block form  

 
(0) ( )

(0) (0) (0)
1 1( ) ( ) ( )
2 3

a k a a mn
a k a k k mn kG m K m

 
 
 
 
 

∂ Φ = Φ , ∂ ∆ Φ − Φ = Φ ,  

[ ] ( )
( ) ( ) [ ]

1 ( ) ( ) ( )
2

a mn l a k a mn
a cd mnl dc k dc a kb c mn kbcB m F m

 
   
   

  
 

∂ Φ + Λ Φ = Φ ,∂ Φ = Φ ,   (7) 

 
The corresponding matrix equation  

 

1 2 3( ) ( ) 0 { }a
a m x H H H H

x
∂

Γ − Ψ = , Ψ = ; ; ;
∂

               (8) 
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is extended to the Riemannian space-time in accordance with the tetrad 
method. In a space-time with given metric, we fix a tetrad:  
 

2
( )( ) ( ) ( )adS g x dx dx g x e xα β

αβ αβ α= , → , ( ) ( )( ) ( ) ( )ab
a bg x e x e xαβ α βη= , (9) 

 
and then the generalized form gets written as follows  
 

   ( ) ( ) ( ) 0x x m x
x

α
αα

 ∂ Γ + Σ − Ψ = ,  ∂  
                  (10) 

 
where the local matrices ( )xαΓ  are determined with the use of the tetrad  
 

   ( )

0 ( ) 0 0
1 1( ) 0 ( ) 0
2 3( ) ( )

10 ( ) 0 ( )
2

0 0 ( ) 0

a
a

G x

x K x
x e x

x B x

F x

α

α α

α α

α α

α

 
 
 ∆ −
 Γ = Γ = , 
 Λ
 
 
 

     (11) 

 
and connection ( )xαΣ  is defined by relations  
 

   1
( ) ( )

2

3

0 0 0 0
0 ( ) 0 0

( ) ( ) ( )
0 0 ( ) 0
0 0 0 ( )

ab
a bx J e x e x αβ

α β α
α

α

 
 
 
 
 
 ;
 
 
 
 
 

Σ
Σ = = ,

Σ
Σ

              (12) 

 
where ( ) ( )( ) ( ) ( ) 1 2 3ab

i i a bx J e x e x iβ
β α;Σ = , = , , ;  and 1 2 3

ab ab abJ J J, ,  stand for 
the generators for the tensors ( ) [ ]k mn mn lΦ ,Φ ,Φ . The equation (10) can be 
presented by using the Ricci rotation coefficients  
 

   ( )
1( ) ( ) 0 .
2

c ab
c abce x J m x

x
α

α γ
 
 
 
 
 

 ∂
Γ + − Ψ = ∂ 

                   (13) 

 
In block form, eq. (13) reads  
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1 1 2 2 1
1 1( )[ ( ) ] ( ) ( )[ ( ) ]
2 3

G x H mH x H K x H mHα α α
α α α α α∂ + Σ = , ∆ ∂ − ∂ + Σ = ,

1 1 3 3 2 2 2 3
1( )[ ( ) ] [ ( ) ] , ( )[ ( ) ]
2

x H H mH F x H mHα α
α α α α α αΛ ∂ + Σ + ∂ + Σ = ∂ + Σ = .

 
In the massless case, the system slightly changes:  
 

1 1 2 2 1
1 1( )[ ( ) ] 0 ( ) ( )[ ( ) ]
2 3

G x H x H K x H Hα α α
α α α α α∂ + Σ = , ∆ ∂ − ∂ + Σ = ,  

1 1 3 3 2 2 3
1( )[ ( ) ] [ ( ) ] 0 ( )[ ( ) ]
2

x H H F x H Hα α
α α α α α αΛ ∂ + Σ + ∂ + Σ = , ∂ + Σ = ,

 
 

but its physical content is completely different. In particular, let us detail 
tetrad representation for the gauge solutions:  
 

( ) ( )
( ) ( )( ) c c
c cL x e L e Lα α α

α α α;Φ = ∇ ⇒ Φ = ∂ + ,  

( )
1 ( )
2

L L g x ρ
αβ α β β α αβ ρ= ∇ + ∇ − ∇ Λ ⇒Φ  

   ( )
( ) [ ] [ ] ( ) ( ) ( ) ( )

1
2

c
ab ca b cb a a b b a abL e e gα α

α αγ γ 
 
 

= − + + ∂ Λ + ∂ Λ − Φ.Φ       (14) 

 
The concomitant gauge components are determined by the formulas  
 

1 2 3 22 2
1 1( ) ( )[ ( ) ] ( ) ( )
2 3

x H K x F xH H H Hα α α
α α α α α

 
  = ∆ ∂ − ∂ + Σ , = ∂ + Σ .(15) 

 
The covariant equation is symmetric under the local Lorentz group, in ac-
cordance with the following relations  
 

   

1  

1 1

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

x S x x S x x S x x

S x x S x S x S x
x

α α

αα α

′−

− −

′Ψ = Ψ , Γ = Γ ,
∂

Σ + = ,′Σ
∂

          (16) 

 
where the prime indicates that quantities are determined with the use of the 
primed tetrad related to initial one by the local Lorentz transformation 

( ) ( )( ) ( ) ( )b
a a be x L x e xσ σ

′ = . With respect to the coordinate transformation, the 

field function Ψ  behaves as a scalar,  ( ) ( )x x x xα α′ ′ ′→ , Ψ = Ψ .  
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SPIN 1/2 PARTICLE WITH THE ANOMALOUS MAGNETIC 
AND ELECTRIC DIPOLE MOMENTS,  

THEORIES WITH ONE AND THREE MASS PARAMETERS 
 
In [1], staring from the general formalism by Gel’fand-Yaglom [2], it 

was introduced a P -asymmetric wave equation for a spin 1/2 particle with 
the anomalous magnetic moment (in fact, this theory describes the particle 
with electric dipole moment). In [1], this equation was studied in presence 
of external Coulomb field, but for simplicity additional interaction due to 
electric dipole moment was removed, so in [1] only possible manifestation 
of P -asymmetry was tested. Concerning the theory of the P -symmetric 
equation for a particle with anomalous magnetic moment see [3–8]; it is 
Petras [9] who first developed this theory within the general approach by 
Gel’fand-Yaglom.  

The present paper is organized as follows. In section II study solutions 
of equation for the P -asymmetric particle (referring to electric dipole mo-
ment) in presence of external magnetic fields. It turns out that the energy 
spectra are the same as for P -symmetric particle (referring to anomalous 
magnetic moment).  

To clarify this coincidence, in section III we demonstrate that there ex-
ists simple transformation relating these to models, by which one wave 
equation can be reduced to the form of other, correspondingly the function 
Ψ  transforms to new one ′Ψ ; and expressions for operator of P -reflection 
are different in these two bases.  

In section IV, we extend this approach the model, in which both sec-
tors, P -symmetric and P -asymmetric, are presented. The main result is 
the same: there exists simple transformation (more general than in the 
above) relating P -symmetric model and that with two sectors, and expres-




