A. Ivashkevich, A. Buryy, E. Ovsiyuk, V. Balan, V. Kisel, V. Red'kov<br>B. I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Belarus

## ON THE MATRIX EQUATION FOR A SPIN 2 PARTICLE IN PSEUDO-RIEMANNIAN SPACE-TIME

After the study by Pauli and Fierz [1, 2], the theory of massive and massless fields with spin 2 has always attracted much attention [3-13]. Most of the studies were performed in the framework of 2-nd order differential equations. It is known that many specific difficulties may be avoided if from the very beginning we start with 1 -st order systems. Apparently, the first systematic study of the theory of spin 2 fields within the first order formalism was done by F. I. Fedorov [4]. It turns out that this description requires a field function with 3 independent components. This theory was re-discovered and improved by Regee [5]. In the present paper we develop the theory of the spin 2 field, in both massive and massless variants, starting from the matrix equation in Minkowski space-time and extending it to the generally covariant theory within the Tetrode-Weyl-Fock-Ivanenko tetrad method.

We start with the known system of the first order equations for a massive spin 2 particle:

$$
\begin{gather*}
\partial^{a} \Phi_{a}=m \Phi, \quad \frac{1}{2} \partial_{a} \Phi-\frac{1}{3} \partial^{b} \Phi_{(a b)}=m \Phi_{a} \\
\frac{1}{2}\left(\partial^{k} \Phi_{[k a] b}+\partial^{k} \Phi_{[k b] a}-\frac{1}{2} g_{a b} \partial^{k} \Phi_{[k n]}^{n}\right)+\left(\partial_{a} \Phi_{b}+\partial_{b} \Phi_{a}-\frac{1}{2} g_{a b} \partial^{k} \Phi_{k}\right)=m \Phi_{(a b)}, \\
\partial_{a} \Phi_{(b c)}-\partial_{b} \Phi_{(a c)}+\frac{1}{3}\left(g_{b c} \partial^{k} \Phi_{(a k)}-g_{a c} \partial^{k} \Phi_{(b k)}\right)=m \Phi_{[a b] c}, \tag{1}
\end{gather*}
$$

where the field variables are scalar, vector, symmetric 2 -rank tensor, and 3-rank skew-symmetric in two first indices tensor, $m=\mathrm{i} M$. By excluding the vector and the 3 -rank tensor, we obtain the 2 -nd order equations with respect to the scalar and symmetric tensor:

$$
\begin{equation*}
\Phi=0, \quad\left(\square+M^{2}\right) \Phi_{(a b)}=0, \quad \Phi_{(a b)}=\Phi_{(b a)}, \quad \Phi^{a}{ }_{a}=0, \quad \partial^{k} \Phi_{(k a)}=0 . \tag{2}
\end{equation*}
$$

In massless case, the first order system reads

$$
\begin{gather*}
\partial^{a} \Phi_{a}=0, \frac{1}{2} \partial_{a} \Phi-\frac{1}{3} \partial^{b} \Phi_{(a b)}=\Phi_{a} \\
\frac{1}{2}\left(\partial^{k} \Phi_{[k a] b}+\partial^{k} \Phi_{[k b] a}-\frac{1}{2} g_{a b} \partial^{k} \Phi_{[k n]}^{n}\right)+\left(\partial_{a} \Phi_{b}+\partial_{b} \Phi_{a}-\frac{1}{2} g_{a b} \partial^{k} \Phi_{k}\right)=0 \\
\partial_{a} \Phi_{(b c)}-\partial_{b} \Phi_{(a c)}+\frac{1}{3}\left(g_{b c} \partial^{k} \Phi_{(a k)}-g_{a c} \partial^{k} \Phi_{(b k)}\right)=\Phi_{[a b] c} \tag{3}
\end{gather*}
$$

From (3) we derive the 2-nd order equations for the massless field:

$$
\begin{gather*}
\frac{1}{2} \square \Phi-\frac{1}{3} \partial^{k} \partial^{l} \Phi_{(k l)}=0, \\
\left(\partial_{a} \partial_{b}+\frac{1}{2} g_{a b} \square\right) \Phi-\frac{1}{4} g_{a b} \square \Phi_{c}^{c}+\square \Phi_{(a b)}-\partial_{a} \partial^{l} \Phi_{(b l)}-\partial_{b} \partial^{l} \Phi_{(a l)}=0 . \tag{4}
\end{gather*}
$$

Massless equations have a class of gauge solutions:

$$
\begin{equation*}
\bar{\Phi}=\partial^{l} L_{l}, \quad \bar{\Phi}_{(a b)}=\partial_{a} L_{b}+\partial_{b} L_{a}-\frac{1}{2} g_{a b} \partial^{l} L_{l}, \tag{5}
\end{equation*}
$$

where $L_{l}(x)$ stands for an arbitrary 4 -vector. These special states do not contribute to physically observable quantities, like the energy-momentum tensor. The concomitant gauge components are as follows:

$$
\begin{equation*}
\bar{\Phi}_{a}=\frac{1}{3} \partial_{a} \partial^{l} L_{l}-\frac{1}{3} L_{a}, \bar{\Phi}_{[a b] c}=\partial_{c}\left(\partial_{a} L_{b}-\partial_{b} L_{a}\right)-\frac{g_{c b} \partial_{a}-g_{c a} \partial_{b}}{3} \partial^{l} L_{l}+\frac{g_{c b} L_{a}-g_{c a} L_{b}}{3} . \tag{6}
\end{equation*}
$$

The system (1) can be re-written in equivalent block form

$$
\begin{align*}
& \partial_{a}\left(G^{a}\right)_{(0)}{ }^{k} \Phi_{k}=m \Phi_{(0)}, \quad \partial_{a}\left\{\frac{1}{2}\left(\Delta^{a}\right)_{k}^{(0)} \Phi_{(0)}-\frac{1}{3}\left(K^{a}\right)_{k}^{(m n)} \Phi_{m n}\right\}=m \Phi_{k}, \\
& \partial_{a}\left\{\frac{1}{2}\left(B^{a}\right)_{(c d)}^{[m n]} \Phi_{m n l}+\left(\Lambda^{a}\right)_{(d c)}^{k} \Phi_{k}\right\}=m \Phi_{d c}, \partial_{a}\left\{\left(F^{a}\right)_{[k b] c}^{(m n)} \Phi_{m n}\right\}=m \Phi_{k b c}, \tag{7}
\end{align*}
$$

The corresponding matrix equation

$$
\begin{equation*}
\left(\Gamma^{a} \frac{\partial}{\partial x^{a}}-m\right) \Psi(x)=0, \quad \Psi=\left\{H ; H_{1} ; H_{2} ; H_{3}\right\} \tag{8}
\end{equation*}
$$

is extended to the Riemannian space-time in accordance with the tetrad method. In a space-time with given metric, we fix a tetrad:
$d S^{2}=g_{\alpha \beta}(x) d x^{\alpha} d x^{\beta}, \quad g_{\alpha \beta}(x) \rightarrow e_{(a) \alpha}(x), g_{\alpha \beta}(x)=\eta^{a b} e_{(a) \alpha}(x) e_{(b) \beta}(x)$,
and then the generalized form gets written as follows

$$
\begin{equation*}
\left[\Gamma^{\alpha}(x)\left(\frac{\partial}{\partial x^{\alpha}}+\Sigma_{\alpha}(x)\right)-m\right] \Psi(x)=0, \tag{10}
\end{equation*}
$$

where the local matrices $\Gamma^{\alpha}(x)$ are determined with the use of the tetrad

$$
\Gamma^{\alpha}(x)=e_{(a)}^{\alpha}(x) \Gamma^{a}=\left(\begin{array}{cccc}
0 & G^{\alpha}(x) & 0 & 0  \tag{11}\\
\frac{1}{2} \Delta^{\alpha}(x) & 0 & -\frac{1}{3} K^{\alpha}(x) & 0 \\
0 & \Lambda^{\alpha}(x) & 0 & \frac{1}{2} B^{\alpha}(x) \\
0 & 0 & F^{\alpha}(x) & 0
\end{array}\right),
$$

and connection $\Sigma_{\alpha}(x)$ is defined by relations

$$
\Sigma_{\alpha}(x)=J^{a b} e_{(a)}^{\beta}(x) e_{(b) \beta ; \alpha}(x)=\left(\begin{array}{cccc}
0 & 0 & 0 & 0  \tag{12}\\
0 & \left(\Sigma_{1}\right)_{\alpha} & 0 & 0 \\
0 & 0 & \left(\Sigma_{2}\right)_{\alpha} & 0 \\
0 & 0 & 0 & \left(\Sigma_{3}\right)_{\alpha}
\end{array}\right),
$$

where $\Sigma_{i}(x)=J_{i}^{a b} e_{(a)}^{\beta}(x) e_{(b) \beta ; \alpha}(x), \quad i=1,2,3$; and $J_{1}^{a b}, J_{2}^{a b}, J_{3}^{a b}$ stand for the generators for the tensors $\Phi_{k}, \Phi_{(m n)}, \Phi_{[m n] l}$. The equation (10) can be presented by using the Ricci rotation coefficients

$$
\begin{equation*}
\left[\Gamma^{c}\left(e_{(c)}^{\alpha}(x) \frac{\partial}{\partial x^{\alpha}}+\frac{1}{2} J^{a b} \gamma_{a b c}\right)-m\right] \Psi(x)=0 . \tag{13}
\end{equation*}
$$

In block form, eq. (13) reads

$$
\begin{aligned}
& G^{\alpha}(x)\left[\partial_{\alpha}+\left(\Sigma_{1}\right)_{\alpha}\right] H_{1}=m H, \quad \frac{1}{2} \Delta^{\alpha}(x) \partial_{\alpha} H-\frac{1}{3} K^{\alpha}(x)\left[\partial_{\alpha}+\left(\Sigma_{2}\right)_{\alpha}\right] H_{2}=m H_{1}, \\
& \Lambda^{\alpha}(x)\left[\partial_{\alpha}+\left(\Sigma_{1}\right)_{\alpha}\right] H_{1}+\frac{1}{2}\left[\partial_{\alpha}+\left(\Sigma_{3}\right)_{\alpha}\right] H_{3}=m H_{2}, \quad F^{\alpha}(x)\left[\partial_{\alpha}+\left(\Sigma_{2}\right)_{\alpha}\right] H_{2}=m H_{3} .
\end{aligned}
$$

In the massless case, the system slightly changes:

$$
\begin{gathered}
G^{\alpha}(x)\left[\partial_{\alpha}+\left(\Sigma_{1}\right)_{\alpha}\right] H_{1}=0, \quad \frac{1}{2} \Delta^{\alpha}(x) \partial_{\alpha} H-\frac{1}{3} K^{\alpha}(x)\left[\partial_{\alpha}+\left(\Sigma_{2}\right)_{\alpha}\right] H_{2}=H_{1}, \\
\Lambda^{\alpha}(x)\left[\partial_{\alpha}+\left(\Sigma_{1}\right)_{\alpha}\right] H_{1}+\frac{1}{2}\left[\partial_{\alpha}+\left(\Sigma_{3}\right)_{\alpha}\right] H_{3}=0, \quad F^{\alpha}(x)\left[\partial_{\alpha}+\left(\Sigma_{2}\right)_{\alpha}\right] H_{2}=H_{3},
\end{gathered}
$$

but its physical content is completely different. In particular, let us detail tetrad representation for the gauge solutions:

$$
\begin{gather*}
\bar{\Phi}=\nabla_{\alpha} L^{\alpha}(x) \Rightarrow \bar{\Phi}=e^{(c) \alpha} \partial_{\alpha} L_{(c)}+e_{(c) ; \alpha}^{\alpha} L^{(c)}, \\
\bar{\Phi}_{(\alpha \beta)}=\nabla_{\alpha} L_{\beta}+\nabla_{\beta} L_{\alpha}-\frac{1}{2} g_{\alpha \beta}(x) \nabla_{\rho} \Lambda^{\rho} \Rightarrow \\
\bar{\Phi}_{(a b)}=-\left(\gamma_{[c a] b}+\gamma_{[c b] a}\right) L^{(c)}+e_{(a)}^{\alpha} \partial_{\alpha} \Lambda_{(b)}+e_{(b)}^{\alpha} \partial_{\alpha} \Lambda_{(a)}-\frac{1}{2} g_{a b} \bar{\Phi} . \tag{14}
\end{gather*}
$$

The concomitant gauge components are determined by the formulas

$$
\begin{equation*}
\bar{H}_{1}=\frac{1}{2} \Delta^{\alpha}(x) \partial_{\alpha} \bar{H}-\frac{1}{3} K^{\alpha}(x)\left[\partial_{\alpha}+\left(\Sigma_{2}\right)_{\alpha}\right] \bar{H}_{2}, \quad \bar{H}_{3}=F^{\alpha}(x)\left[\partial_{\alpha}+\left(\Sigma_{2}\right)_{\alpha}\right] \bar{H}_{2} . \tag{15}
\end{equation*}
$$

The covariant equation is symmetric under the local Lorentz group, in accordance with the following relations

$$
\begin{gather*}
\Psi^{\prime}(x)=S(x) \Psi(x), \quad S(x) \Gamma^{\alpha}(x) S^{-1}(x)=\Gamma^{\prime \alpha}(x), \\
S(x) \Sigma_{\alpha}(x) S^{-1}(x)+S(x) \frac{\partial}{\partial x^{\alpha}} S^{-1}(x)=\Sigma_{\alpha}^{\prime}, \tag{16}
\end{gather*}
$$

where the prime indicates that quantities are determined with the use of the primed tetrad related to initial one by the local Lorentz transformation $e_{\left(a^{\prime}\right)}^{\sigma}(x)=L_{a}{ }^{b}(x) e_{(b)}^{\sigma}(x)$. With respect to the coordinate transformation, the field function $\Psi$ behaves as a scalar, $x^{\alpha} \rightarrow x^{\prime \alpha}, \Psi(x)=\Psi^{\prime}\left(x^{\prime}\right)$.

## References

1. Fierz, M. On relativistic wave equations for particles of arbitrary spin in an electromagnetic field / M. Fierz, W. Pauli // Proc. Roy. Soc. London. A. - 1939. - Vol. 173. - P. 211-232.
2. Pauli, W. bber relativistische Feldleichungen von Teilchen mit beliebigem Spin im elektromagnetishen Feld / W. Pauli, M. Fierz // Helv. Phys. Acta. - 1939. - Vol. 12. - P. 297-300.
3. Fradkin, E. S. To the theory of particles with higher spins / E. S. Fradkin // Journal of Experimental and Theoretical Physics. - 1950. Vol. 20, № 1. - P. 27-38.
4. Fedorov, F. I. To the theory of particles with spin 2 / F. I. Fedorov // Proceedings of Belarus State University. Ser. Phys.-Math. - 1951. Vol. 12. - P. 156-173.
5. Regge, T. On properties of the particle with spin $2 / \mathrm{T}$. Regge // Nuovo Cimento. - 1957. - Vol. 5, № 2. - P. 325-326.
6. Krylov, B. V. Equations of the first order for graviton / B. V. Krylov, F. I. Fedorov // Doklady of the National Academy of Sciences of Belarus. - 1967. - Vol. 11, № 8. - P. 681-684.
7. Fedorov, F. I. Equations of the first order for gravitational field / F. I. Fedorov // Doklady of the Academy of Sciences of USSR. - 1968. Vol. 179, № 4. - P. 802-805.
8. Bogush, A. A. On matrices of the equations for spin 2 particles / A. A. Bogush, B. V. Krylov, F. I. Fedorov // Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. - 1968. - № 1. - P. 74-81.
9. Fedorov, F. I. The first order equations for gravitational field in vacuum / F. I. Fedorov, A. A. Kirilov // Acta Physica Polonica. B. 1976. Vol. 7, № 3. - P. 161-167.
10. Kisel, V. V. On relativistic wave equations for a spin 2 particle / V. V. Kisel // Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. - 1986. - № 5. - P. 94-99.
11. On equations for a spin 2 particle in external electromagnetic and gravitational fields / A. A. Bogush [et al.] // Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. - 2003. - № 1. - P. 62-67.
12. Red'kov, V. M. Graviton in a curved space-time background and gauge symmetry / V. M. Red'kov, N. G. Tokarevskaya, V. V. Kisel // Nonlinear Phenomena in Complex Systems. - 2003. Vol. 6, № 3. - P. 772-778.
13. Contribution of gauge degrees of freedom in the energy-momentum tensor of the massless spin 2 field / V. V. Kisel [et al.] // Proceedings of the National Academy of Sciences of Belarus. Physics and Mathematics Series. - 2015. - № 2. - P. 58-63.
