2015 № 4 (90)

УДК 539.216:546.824-31

ЗОННАЯ СТРУКТУРА 3D И 2D РАЗМЕРНОГО Ca2Si

В.О. БОГОРОДЬ, В.Л. ШАПОШНИКОВ, А.Б. ФИЛОНОВ, Б.С. КОЛОСНИЦЫН, Д.Б. МИГАС

Белорусский государственный университет информатики и радиоэлектроники П. Бровки, 6, Минск, 220013, Беларусь

Поступила в редакцию 18 декабря 2014

Представлены результаты теоретического исследования зонных структур объемного Ca_2Si и тонких пленок на его основе с поверхностями (001), (010), (100). Установлено, что объемный Ca_2Si и тонкие пленки $Ca_2Si(010)$ и (100) являются прямозонными полупроводниками, а поверхностные состояния приводят к металлическим свойствам тонких пленок $Ca_2Si(001)$.

Ключевые слова: тонкие пленки, силицид кальция, зонная структура.

Введение

Силициды хорошо совместимы с традиционной кремниевой технологией и широко используются в современно микро- и наноэлектронике [1]. Большинство из них являются металлами, но существуют и полупроводниковые силициды [2], которые имеют привлекательные свойства для применения в термоэлектронных [3] и оптоэлектронных [4] приборах. Недавно значительное внимание привлекли полупроводниковые силициды щелочноземельных металлов, а именно Mg_2Si , Ca_2Si и $BaSi_2$. Компоненты этих соединений достаточно широко распространены в земной коре. Более того, эти силициды оказались безвредными для окружающей среды.

Известно, что Ca₂Si кристаллизуется в простой орторомбической структуре (с пространственной группой *Pnma*) [5], имеющей параметры решетки, которые приведены в таблице. Элементарная ячейка Ca₂Si, изображенная на рис. 1, включает в себя четыре формульные единицы, где все атомы сгруппированы в три равных набора химически неэквивалентных позиций. Установлено, что каждый атом кремния окружен трехгранными призмами, сформированными атомами кальция [6].

Экспериментальные параметры решетки Ca₂Si

Параметр	a (Å)	b (Å)	c (Å)
Эксперимент	7,667	4,799	9,002
Теория	7,615	4,820	9,051

По результатам теоретических исследований зонной структуры, проведенных с учетом многочастичного взаимодействия в рамках GW-приближения, выявлено, что Ca₂Si является прямозонным полупроводником с шириной запрещенной зоны 1,02 эВ [7]. Первый прямой переход расположен в точке Г простой орторомбической зоны Бриллюэна. Это же значение ширины запрещенной зоны (1,02 эВ) получено в результате исследования температурной зависимости Холовской подвижности носителей заряда в случае тонких пленок Ca₂Si [8]. Следует отметить, что практически аналогичная дисперсия энергетических зон вблизи запрещенной зоны была обнаружена в другой теоретической работе [9], где использовался первопринципный метод псевдопотенциалов в приближении локальной плотности, хотя значение ширины запрещенной зоны оказалось равным 0,31 эВ. Подобное занижение ширины запрещенной зоны типично для методов, использующих приближение локальной плотности. В

данной работе будет исследовано влияние различных потенциалов (модифицированного обменного потенциала Беке-Джонсона и гибридного функционала YS-PBE0) на дисперсию и ширину запрещенной зоны объемного Ca_2Si , а также будут рассмотрены возможные понижения изменения электронных свойств этого силицида в случае понижения размерности с 3D до 2D, т.е. от объемного материала до тонких пленок.

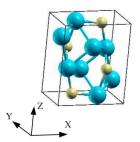


Рис. 1. Элементарная ячейка Ca₂Si: сферы большего размера отображают атомы кальция, а меньшего размера – атомы кремния

Детали расчета и структурные модели

Моделирование структурных и электронных свойств объемного Ca₂Si и тонких пленок на его основе проводилось с помощью метода псевдопотенциалов (код VASP) [10]. В качестве обменного и корреляционного потенциалов использовалось обобщенное градиентное приближение Пердю-Берке-Ернценхоф [11]. Минимизация полной энергии осуществлялась через оптимизацию параметров решетки и релаксацию атомных позиций. Структурная оптимизация была остановлена, когда силы, действующие на атомы, были меньшими, чем 0,01 эВ/А. Сходимость по полной энергии была лучше, чем 1 мэВ на формульную единицу, при $9 \times 13 \times 7$ набора k-точек в неприводимой части зоны Оптимизированные параметры решетки оказались очень близки к экспериментальным значениям, которые представлены в табл. 1. Для расчета зонной структуры объемного Ca₂Si также был применен метод линеаризированных присоединенных плоских волн с полным потенциалом (код WIEN2k) [12], где использовалась кристаллическая структура Ca₂Si, полностью оптимизированная с помощью метода псевдопотенциалов. Наряду с обобщенным градиентным приближением Пердю-Берке-Ернценхоф использовались модифицированный обменный потенциал Беке-Джонсона [13] и гибридный функционал YS-PBE0 [14]. Параметр, который контролировал сходимость $R_{\rm MT}K_{\rm max}$, был равен 8, а разложение волновых функций по решеточным гармоникам для парциальных волн, используемых внутри атомных сфер, проводилось до l=10. Процедура самосогласования выполнялась на 45 k-точках, равномерно расположенных в неприводимой части зоны Бриллюэна.

Пленки Ca_2Si рассматривали как периодически расположенные 2D структуры (тонкие пленки), отделенные между собой слоем вакуума толщиной 9 Å, и имеющие две одинаковые поверхности. Установлено, что этой толщины вакуума было достаточно для исключения взаимодействия между соседними пленками. Были рассмотрены пленки с поверхностями (100), (010), (001) и толщиной около 3,5 нм, которые получены при увеличении соответственно в четыре, в восемь и в пять раз параметров решетки a, b или c (рис. 2).

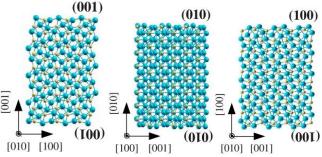


Рис. 2. Вид сбоку тонких пленок Ca_2Si с поверхностями (001), (010) и (100), имеющих толщину соответственно 3,5 нм, 3,7 нм и 3,7 нм, после оптимизации. Сферы большего размера изображают атомы кальция, меньшего — кремния. Поверхности и кристаллографические направления обозначены

Электронные свойства объемного Ca₂Si и тонких пленок Ca₂Si

Полученная зонная структура в рамках обобщенного градиентного приближения показана на рис. 3, a. Очевидно, что Ca_2Si является прямозонным полупроводником, поскольку максимум валентной зоны и минимум зоны проводимости расположены в точке Γ . Установлено, что Ca-d состояния и Si-p состояния вносят свой вклад в максимум валентной зоны, в то время как Ca-s, Ca-d и Si-d состояния доминируют в минимуме зоны проводимости. Ширина запрещенной зоны 0,31 эВ оказалась очень близка к ранее полученным результатам [15], где использовалось обобщенное градиентное приближение, и значительно недооценена по сравнению с экспериментальным значением (1,02 эВ [6]), и теоретически полученному (1,02 эВ) с учетом многочастичного взаимодействия в рамках GW-приближения [10]. Применение обменного потенциала Беке-Джонсона позволило увеличить оценку ширины запрещенной зоны до 0,60 эВ (см. рис. 3,6), тогда как использование гибридного функционала привело к значениям ширины запрещенной зоны 0,79 эВ (см. рис. 3,6). Следует отметить, что дисперсия зон вблизи запрещенной зоны для различных потенциалов одинакова.

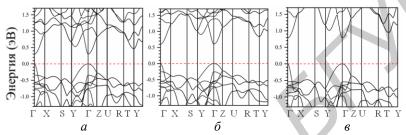


Рис. 3. Зонная структура объемного Ca_2Si в рамках обобщенного приближения градиента Пердю-Берке-Ернценхоф (a), учетом потенциала обмена Беке-Джонсона (δ), с учетом гибридного функционала (ϵ)

На рис. 4 представлены энергетические зонные диаграммы пленок с различными поверхностями, полученные в результате вычислений методом псевдопотенциалов с использованием обобщенного градиентного приближения. Отметим, что пленку Ca₂Si с поверхностью (001) можно рассматривать как металл, так как уровень Ферми пересекает несколько зон, которые сформированы Са-р, Са-д и Si-р состояниями атомов, расположенных на и у поверхности пленки. В то же время пленки Ca₂Si(100) и (010) являются полупроводниками, с шириной запрещенной зоны около 0,48 эВ. Полученное значение ширины запрещенной зоны (0,31 эВ) оказалось больше чем для объема из-за влияния эффектов квантового ограничения. Для Ca₂Si(010) максимум валентной зоны определен Ca-d и Si-p состояниями атомов, расположенных во внутренней области пленки, в то время как Ca-s и Ca-dсостояния атомов, равномерно распределенных по всей толщине пленки, характеризуют минимум зоны проводимости. В случае с Са2Si(100) в максимум валентной зоны вносят свой вклад Са-р, Са-d и Si-р состояния атомов, которые находятся у поверхности пленки, и только Са-я и Са-д состояния атомов, расположенных во внутренней области пленки определяют минимум зоны проводимости. Легко заметить, что дисперсия верхних по энергии валентных зон и нижних по энергии зон проводимости у тонких пленок Са₂Si(010) и (100) подобна дисперсии соответствующих зон для объемного материала.

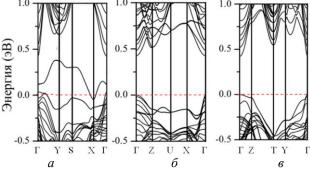


Рис. 4. Зонная структура пленок Ca₂Si с поверхностями a - (001), $\delta - (010)$, $\epsilon - (100)$: ноль на шкале энергии соответствует максимуму валентной зоны для пленок Ca₂Si(010) и (100), в то время как для Ca₂Si(001) отображает положение уровня Ферми

Заключение

По результатам вычислений показано хорошее согласие с предыдущими теоретическими расчетами дисперсии энергетических зон объемного Ca_2Si , и подтверждено, что этот силицид является прямозонным полупроводником. Мы также установили, что применение обменного потенциала Беке-Джонсона и гибридного функционала улучшает оценку значения ширины запрещенной зоны $(0,60\,$ эВ и $0,79\,$ эВ соответственно), однако очевидна ее недооценка по сравнению с экспериментальными данными $(1,02\,$ эВ) и с результатами расчетов $(1,02\,$ эВ), где проводился учет многочастичного взаимодействия в рамках GW-приближения. Поверхностные состояния могут приводить к появлению металлических свойств у тонких пленок $Ca_2Si(001)$, в то время как тонкие пленки $Ca_2Si(010)$ и (100) обладают полупроводниковыми свойствами и прямозонным характером запрещенной зоны.

BANDS STRUCTURE OF 3D AND 2D Ca2Si

V.O. BOGORODZ, V.L. SHAPOSHNIKOV, A.B. FILONOV, B.S. KOLOSNICIN, D.B. MIGAS

Abstract

The results of theoretical research of band structures of Ca_2Si bulk and Ca_2Si thin films with surfaces (001), (010), (100) are presented. It's found that Ca_2Si bulk and thin film $Ca_2Si(010)$ and (100) are direct bandgap semiconductors while $Ca_2Si(001)$ thin films show the metallic properties because of surface's states.

Список литературы

- 1. Maex K., Van Rossum M. // Properties of metal silicides. 1995. P. 335.
- 2. Borisenko V.E. // Semiconducting silicides. 2000. P 348.
- 3. *Heinrich A.* // Semiconducting silicides thermoelectric properties and applications. 2000. P. 126–137.
- 4. Leong D.N. // Nature. 1997. Vol. 387, № 6634. P. 686–688.
- 5. *Eckerlin P.*, *Wolfel E.* // Anorg. Chem. 1955. Vol. 280, № 5–6. P. 321–331.
- 6. Ganguli A.K., Guloy A. M., Corbett J. D. // Solid State Chem. 2000. Vol. 152. P. 474.
- 7. Lebegue S., Arnaud B., Alouani M. // Phys. Rev. B. 2005. Vol. 72. P. 085103.
- 8. Dotsenko S.A. // Physics Procedia. 2011. Vol. 11. P. 95.
- 9. *Migas D.B.* // Phys. Rev. B. 2003. Vol. 67, № 20. P. 205203 (7).
- 10. Kresse G., Furthmuller J. // Phys. Rev. B. 1996. Vol. 54, № 16. P. 11169–11186.
- 11. Perdew J.P., Burke S., Ernzerhof M. // Phys. Rev. Lett. 1996. Vol. 77. P. 3865.
- 12. Blaha P., Schwarz K., Madsen G.K.H. et. al. WIEN2k, An Augmented Plane WaVe + Local Orbitals Program for Calculating Crystal Properties. Austria, 2001.
- 13. Tran F., Blaha P. // Phys. Rev. Lett. 2009. Vol. 102. P. 226401.
- 14. Tran F., Blaha P. // Phys. Rev. B. 2011. Vol. 83. P. 235118.
- 15. Wen C., Nonomura T., Kato A. et. al. // Physics Procedia. 2011. Vol. 11. P. 106.