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Abstract—Diabetic retinopathy (DR) frequently appears in diabetic patients. It is initially asymptomatic, but
can progress to blindness. Screening studies for its diagnosis are performed in many countries by means of
photographing the eye retina with special fundus-cameras. These studies are aimed at revealing the presence
of microaneurysms (MAs) on the retina, which are the primary signs of DR. The wide variety of cameras,
peculiarities of retina illumination, FOV angles, and sizes of digital images has complicated the development
of a reliable and universal approach to analyzing retina images by machine-learning methods. In this paper,
we consider the problem of choosing the size and shape of a unified template for representing the data of an
arbitrary retinal image for subsequent automated DR screening. It is experimentally proved that it is possible
to extract a square inscribed in the FOV region from each retinal image and compress it to the size of 512 ×
512 pixels. This is the minimum allowable size of the template. It preserves the required number of MAs for
DR screening by machine-learning methods.

Keywords: digital retinal image, fundus-camera, microaneurysm, optical disk, machine learning
DOI: 10.1134/S1054661822020195
Table 1. FOV angles of different cameras and the corre-
sponding retinal area on the image [11]

FOV angle, deg Retinal area, mm2

30 56.4
INTRODUCTION

Several diseases of the eye, especially in diabetic
patients, are initially absolutely asymptomatic. Some
of them, including diabetic retinopathy (DR), are
refractory; therefore, it is of crucial importance to
diagnose them at an early stage. Primary diagnostics is
performed through screening of people by means of
photographing the eye retina with special fundus-
cameras [23]. A f luorescein angiogram (FAG) is the
most efficient way to detect microaneurysms (MAs)
on the retina, but it is not used for DR screening
because of invasiveness and cost. The number of
MAs on the retina is an important indicator of the
development and progression of DR. It is assumed
that MAs are not benign neoplasms. Treatment of
DR at the early stages allows its course to be stabi-
lized and decelerated; thus, analysis of the presence
of microaneurysms on the eye retina may be of use in
clinical practice [19].

The representation of the retinal region on an
image depends on the spatial angle (field of view, or
FOV) of the camera photographing it (see Fig. 1 and
Table 1); therefore, it is frequently called the FOV
region. The rest of the image is occupied by dark back-
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ground. Cameras of different manufacturers register
images on arrays of different sizes, differently placing
the FOV region on the image (Fig. 2). The largest and
smallest images in the Kaggle base (the largest avail-
able one [8]) have sizes from 5184 × 3456 to 433 ×
289 pixels, respectively. The FOV angles in this base
are different, but not specified. The resolution of the
image and the ratio of the retinal image to the area of
the array in pixels may vary in a wide range (Fig. 2).
The area of the FOV region in the image ranges from
43.19% (in the Kaggle data-set [8]) to 99.09% in the
DRIMDB base [2].

The thickness of the retina is different in different
places. It depends on the age of the person and the
presence of diseases [9] and on average it is approxi-
mately 250 ± 22 μm. The retina is riddled with blood
vessels; therefore, red color dominates on the images
registered in the visible range.
331. © Pleiades Publishing, Ltd., 2022.
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Fig. 1. Different projections of retina of the same eye
obtained by cameras with different FOV angles (20°, 40°,
and 60°); the light spot to the right is the OD [7].
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Nunes et al. [14] described decadal studies of col-
ored photos of patients’ retina with macular edema.
They showed that the rate of formation of microaneu-
rysms is 9.2 ± 18.2 per year during the first two years.
The authors concluded that the high rate of formation
of microaneurysms of the fundus is a good biomarker
of DR progression in patients with type 2 diabetes.

A detailed analysis of images of different eyes made
by the same camera under the same conditions of pho-
tography showed that the size of the FOV mask in the
image matrix and its boundaries and center can vary
somewhat for images of different eyes. This is con-
firmed by the FOV masks constructed for high-resolu-
tion retinal images in the DRIVE database [3]. In this
base, for each image a reference mask of the FOV
region is presented, which has the same size as the
image itself (52336 × 3504 pixels). In Table 2 we pres-
ent the areas, the coordinates of the centers of the FOV
PATTERN RECOGNITION AND IMAGE ANALYSIS  V

Fig. 2. Examples of retinal images from different databases
(b) DIARETDB1, FOV = 50°, 3504 × 2316 pixels; (c) IDRID, 
760 × 570 pixels.

(a) (b)
areas, and the correlation coefficients of the masks of
three images from this database.

Small differences in the masks made by the same
camera may be explained by the anatomical features of
different persons and head position at the time of pho-
tographing, because the retinal image is a projection
onto the spheroidal surface of the eyeball. These facts
indicate that the FOV mask must be constructed for
each image individually even if they are made by a sin-
gle camera. Some retinal images contain the entire
disk of the FOV region, while the disk is cropped from
above and below in some images (Figs. 2 and 3).

1. PROBLEM FORMULATION
When methods of artificial intelligence are used for

analyzing retinal images, these images must be
reduced, preferably until a certain fixed size and shape
of representation of the FOV region.

Here there arises a problem not formulated previ-
ously: to determine the universal shape and size of the
matrix-template for representing an arbitrary retinal
image with preservation of details sufficient for correct
determination of the presence of diabetic retinopathy
(DR) by machine-learning methods.

Concerning the shape, three variants are possible:
(a) the disk of the FOV region, (b) a rectangle circum-
scribed around the FOV region, and (c) a square
inscribed in it. To reduce the effect of edge distortions,
the disk radius is sometimes decreased by 10%.

Concerning the size, the area of the image sepa-
rated for analysis is usually transformed (reduced) to a
square. Different square sizes are used. Most methods
of artificial intelligence apply artificial neural net-
works trained for analysis of images of a fixed size,
most frequently 512 × 512 or 256 × 256 pixels. There-
fore, the original retinal images are scaled to a matrix
of the size for which the applied network is trained,
independently of the above-indicated peculiarities [9].
In review [4] it was stated that researchers scale the
original retinal images into square ones with sizes of
180 × 180, 224 × 224, 227 × 227, 231 × 231, 416 × 416,
and 512 × 512 pixels, and even up to 1200 × 1800 pix-
els. However, it is clear in Fig. 1 that the proportions of
ol. 32  No. 2  2022

: (a) CHASEDDB1, FOV = 30°, 999 × 960 pixels in size;
FOV = 50°, 4288 × 2848 pixels; and (d) DRIMDB, FOV = 60°,

(c) (d)
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Table 2. Examples of parameters of FOV mask on images with size 52336 × 3504 made by one camera

File name Coordinates of center (x, y) Area of mask, pixels
Correlation 

coefficient of masks

A1 = 01_dr_mask 1759.6, 1166.8 6912991 (A1, A2) = 0.9985

A2 = 02_dr_mask 1758.9, 1166.9 6915024 (A1, A3) = 0.9987

A3 = 03_dr_mask 1759.8, 1166.8 6915830 (A2, A3) = 0.9982
anatomical objects and disease attributes will be repre-

sented by different numbers of pixels on the images

unified in this way. It is clear that the original images

must be reduced.

There arises a question: how should we reduce the

retinal image to be able to recognize individual

microaneurysms in it? This is because the main attri-

bute of the DR is the appearance of microaneurysms

on the retina [22]; their description as micro clearly

indicates the smallness of their size. Microaneurysms

are isolated spots of circular shape and of varying sizes.

They appear from the inner layers of the retina as a

result of generation of new blood vessels or as a result

of hemorrhage through the weakened walls of capillary

vessels [23]. They are dark-colored (on colored images

they are dark red) and are characterized by local min-

imums of brightness values. Blood vessels may have

similar brightness values, but they have no pro-

nounced local minimums and are elongated objects.

When analyzing retinal images, it is important to

take into account the size of MAs in pixels and their

correspondence to the dimensions in microns. In the

literature sources we find various estimates for the

physical dimensions of MAs. Nunes et al. [14] said

that they may have dimensions from 10 to 125 μm.

According to the studies of Wang et al. [21], the diam-

eter of microaneurysms is 104 μm on average (ranging
PATTERN RECOGNIT

Fig. 3. Variety of retina representation 

2289_left 5849_right 5669_right

14221_left 4446_right 41049_left

33373_left 39091_left 31496_right
from 43 to 266 μm). In other works the following
dimensions of microaneurysms are given:

– from 10 to 100 μm [20];

– from 14 to 136 μm [12];

– from 10 to 100 μm [15];

– from 10 to 125 μm [17];

– from 15 to 60 μm [6, 18, 24].

Elloumi et al. [5] obtained high-resolution confo-
cal images of the eye retina of a person with diabetes
and quantitatively estimated the distribution of the
sizes of MAs. The average diameter of MAs was 34 ±
16 μm, and 60% of them were less than 40 μm in diam-
eter. Elloumi et al. determined the critical diameter of
a MA to be 15 μm for those generated by capillary ves-
sels, 25 μm for those generated by venules, and 104 μm
for those generated by arterioles (Table 3). They stated
that it is easy to identify large MAs, which pose no
danger, but that smaller MAs with diameters less than
20–30 μm are not identified by standard angiography
because they appear as background leakage of blood
through the retina. Although modern methods of visu-
alization cannot detect small MAs, modern methods
of ophthalmological diagnostics, such as OCT, reach
a resolution of 2 μm, and small MAs are clearly seen.
The cost of such diagnostics, however, is considerably
higher, making it not feasible for screening studies.

In contrast to microaneurysms, the optical disk
(OD) of the retina has similar dimensions from person
to person. Ophthalmologists have established that the
ION AND IMAGE ANALYSIS  Vol. 32  No. 2  2022

in the images of Kaggle-2015 database.
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Table 3. Ratio of critical sizes of microaneurysms and blood
vessels

Blood vessels Diameter, μm Width of MA, μm

Capillaries 10 15

Venules 20 25

Arterioles 50 104
OD of a healthy human eye has an oval shape with
average dimensions of 1.88 mm in the vertical direc-
tion and 1.77 mm in the horizontal direction [19, 24].
The dimensions may slightly differ between men and
women and persons of different races, but the standard
deviation is not larger than 0.19 mm. The OD is regis-
tered differently by cameras of different manufactur-
ers; i.e., the resolution of photo images, as well as the
representation of the OD in pixels and the region of
the retina appearing in the frame, vary (Fig. 1) [8], but
the physical dimensions of the OD are approximately
the same independent of the digital representation.

These facts allow estimating the range of values of
microaneurysms in pixels independently of the FOV
angle and camera resolution. The MA sizes mainly fall
in the range from 1/15 to 1/150 of the vertical size of
the OD for a normal eye both in microns and in pixels,
i.e., roughly from 12.5 to 125 μm. However, their sizes
in pixels are different in digital images made by differ-
ent fundus-cameras. Let us check this statement
experimentally.

2. EXPERIMENTAL DATA

At present, there are only three publicly available
databases of images containing color retinal images
and MA masks: E-ophtha (part of Kaggle-2015 base),
the Chinese base DDR, and the Indian base IDRID.
The IDRID base additionally contain the OD masks.
All masks in these bases were formulated by qualified
expert health professionals.

In the IDRID database there are 81 images with
МАa. The angle FOV = 40°. All the images have the
same size of 4288 × 2848 pixels, and the FOV region
was somewhat cropped from above and below [16].
PATTERN RECOGNITION AND IMAGE ANALYSIS  V

Fig. 4. (a) original image with 2592 × 3888 pixels (the ratio
of the retina area to the image area is 0.4319); (b) circum-
scribing square K1 cropped from it and having side of
2351 pixels; and (c) square K2 with side of 1664 pixels.

2592 � 3888

2651 1664

1196right.jpeg
In the DDR database there are 13673 images
acquired at 147 Chinese hospitals [10]. The angle
FOV = 45°. The base was created especially for studies
associated with the DR screening. For 757 images,
experts formed the masks for MA and other DR attri-
butes. We used 487 images with MA masks. This base
has a significant disbalance of classes; for instance, the
share of images of eyes of normal persons is 45.84% of
the entire database, and the share of images with mod-
erately severe DR is 4.61%. In performing their stud-
ies, the authors of [10] cropped the rectangle circum-
scribing the FOV area and transformed it to a square
with a size of 512 × 512 pixels.

In the E-ophtha database there are 148 images with
MA masks and 233 images of normal eyes [1]. The
angle FOV = 40°. There are four image sizes: 960 ×
1440, 1000 × 1504, 1696 × 2544, and 1360 × 2048 pix-
els. A portion of the images have a cropped FOV area
from above and below. Other images contain the full
FOV area in the form of a circle. On average, there are
8.8 MAs with an average size of 47.2 pixels per image.
The total area of all MAs in a single image is approxi-
mately 0.01% of the image area. Consequently, the
MA areas may be reduced to those dimensions such
that the information that allows their detection is pre-
served.

3. ANALYSIS OF DATA IN THE CHOSEN 
PART OF IMAGE OF FOV REGION

We describe the algorithm of cropping a square
from a retinal image of arbitrary size. This consists of
the following steps.

Step 1. Construct the binary mask of the FOV
region in the image of the red color channel.

Step 2. From the mask, construct the rectangle P
circumscribed in the FOV region.

Step 3. If P is a square (FOV is represented by a
complete circle), K1 = P. Otherwise (i.e., when the
FOV area is partially cropped), construct the square
K1 inscribed in P with identically cropped segments of
the FOV area in the horizontal and vertical directions.

Step 4. In the square K1, construct the square K2 <
K1 inscribed in the FOV area. The K1 square contains
the background segments, and the K2 square does not
contain them.

Step 5. Reduce the K2 square to the specified size.
In our experiments we reduced K2 to 512 × 512 pixels.

Examples of original images and cropped objects
from them are presented in Figs. 4 and 5. The K2
square inscribed in the FOV region is 64% of the area
of the complete circle of the FOV region. It is twofold
less than the square circumscribing the FOV region.

The side of the K1 square is  = 1.4142 times larger
than the side of the K2 square. The dimensions of the
MAs differ in the same ratio if both squares are
reduced to the same size in pixels.

2
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Fig. 5. (a) Original image with 2336 × 3504 pixels (the ratio
of the retina area to the image area is 0.6914); (b) circum-
scribing rectangle P cropped from it having the vertical size
of 2224 pixels; and (c) square K2 with side of 2030 pixels.

2336 � 3504 2224

2030

100right.jpeg
A positive property of the inscribed square is the
absence of background in the cropped background
image, and the use of an individual mask for each
image is not required in the further analysis.

On the example of images from the above-indicated
bases, we estimate how the MA sizes vary after reducing
the inscribed square to the size of 512 × 512 pixels. In
Fig. 6 we provide the examples of placing the rectan-
gles circumscribing the set of MAs and the squares
inscribed in the FOV region for several images from
the IDRID base. In Fig. 7 we provide the graphs of the
number of MAs in all images of this base and inside
the inscribed squares. In Figs. 8 and 9 we show the
similar graphs for the images of the DDR database.

The analysis of the given graphs and images shows
that a large part of the MAs fall into the square
inscribed in the FOV region (sometimes, all MAs).
Most frequently, MAs are located near the center. In
Figs. 7b and 8b we see that the number of MAs not
falling into the FOV square is not large. It increases as
the total number of MAs in an image increases. If
there are fewer MAs in the image, outside the square
there are from 0 to 3 MAs. This means that the square
inscribed in the FOV region contains a number of
MAs sufficient for diagnosing DR during screening.

In Table 4 we provide the sizes of some studied
images, the sizes of the rectangles P cropped from
them, the sizes of the squares K1 and K2, and the
ratios between the FOV area and the image area and
between the indicated figures.

In the first row, we provide the data for images of
the IDRID base and next for the images of the DDR
base. In the column K2 : 512 we present the coeffi-
cients of compression of the K2 square to the size of
512 × 512 pixels. K1 : K2 means the ratio of the sizes of
these squares. If it is less than 1.41, then the FOV
region in the original image is partially cropped and
K1 is constructed inside the rectangle P circumscrib-
ing the FOV region. In Table 4 P : 512 indicates the
ratio of the larger side of the rectangle P to the side of
the square of 512 × 512. Table 4 shows the alternatives
for cropping the part of the retinal image to be used for
subsequent DR classification.

We estimate to which size in pixels MAs are
reduced in the case of cropping the squares in the
images of the above-described bases.
PATTERN RECOGNIT

Table 4. Image sizes and their aspect ratios

No. Image size FOV : S, % P K1

1 2848 × 4288 69.04 2842 × 3412 2848

2 1536 × 2048 53.92 1468 × 1468 1468

3 2100 × 2100 39.42 1487 × 1487 1487

4 2976 × 2976 69.53 2798 × 2798 2798

5 2000 × 2584 74.91 1958 × 1958 1958

6 1904 × 2460 84.75 1865 × 2400 1865
Although all the images of the IDRID base are
made by the same camera and have the same resolu-
tion, the dimensions of the OD were different. On
average, the OD height was 105.15 ± 10.57 pixels in the
K2 square with a size of 512 × 512 pixels. The graph of
the heights is given in Fig. 10. The horizontal lines are
the mean value and the mean-square error. These data
tell us that the smallest MAs may be lost for subse-
quent analysis and we cannot analyze images less than
512 × 512 pixels in size cropped from the original reti-
nal image.

The coefficient of compression of the inscribed
square for the images of the IDRID base is 4.71. The
lowest area of MAs in the original images is 17 pixels,
and the size of this MA is approximately 4 × 4 pixels,
i.e., approximately 130 times smaller than the OD.
After compression of the image of the inscribed square
K2 by 4.71 times to the size 512 × 512 pixels, the diam-
eter of the smallest MA is less than 1 pixel. If we com-
press the rectangle P with a size of 2842 × 3412 pixels
by 6.66 times, circumscribing the FOV region to
dimensions of 512 × 512, then the width of the smallest
MA reduces 6.66-fold and, taking into account round-
ing of the pixel coordinates to integers, becomes less
than a single pixel. This means that the MA disappears
in the image reduced to a size of 512 × 512 pixels. Even
if the image of the MA is preserved after reduction, but
has a size of 1–2 pixels, the classifier may think that
this small spot is just a small pulse noise and ignore it
as a feature.

In the DDR base, the compression coefficients are
smaller, but, after cropping the K2 squares, the OD
ION AND IMAGE ANALYSIS  Vol. 32  No. 2  2022

K2 K2 : 512 K1 : K2 P : 512

2413 4.71 1.18 6.66

1038 2.03 1.41 1.41

1051 2.05 1.41 2.90

1976 3.86 1.41 1.41

1625 3.17 1.20 3.82

1697 3.31 1.10 4.69
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Fig. 6. In the images from the IDRID database, light rectangles describe the MA regions (white points); blue color shows the
squares inscribed in the FOV region.

IDRID01MA.tiff IDRID02MA.tiff

IDRIDl1MA.tiff IDRID32MA.tiff

IDRID50MA.tiff IDRID11MA.tiff

IDRID54MA.tiff IDRID31MA.tiff



328 STAROVOITOV et al.

Fig. 7. (a) Distribution of MAs in images of the IDRID database: red curve is the number of all MAs in the image, and blue curve
is the number of MAs falling into the inscribed square; (b) histogram of the difference of these values over all images of the IDRID
database.
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Fig. 8. (a) Distribution of MAs in images of the DDR database: red curve is the number of all MAs in the image, and blue curve
is the number of MAs falling into the inscribed square; (b) histogram of the difference of these values over all images of the DDR
database.
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sizes are approximately the same. This indicates the
invariancy of the OD representation on cropped reti-
nal images independently of the resolution of the orig-
inal images. There are no OD masks in this database,
and we estimated the sizes on a sample basis using an
interactive interface.

In Table 5 we provide the characteristics of four
images from the IMRID base before and after reduc-
ing the image. 0Х is the image number in the base and
0Хsquare means the square inscribed in the FOV
region reduced to the size of 512 × 512 pixels. Next is
the number of MAs in the original and cropped
images. The minimum and maximum sizes of MAs
and ODs for original and reduced images are given.
The sizes of the smallest MAs after scaling the square
are 1–2 pixels in width or height.
PATTERN RECOGNIT
The last column of Table 5 gives an approximate
pixel size in microns following from the average OD
height of 1880 μm. If we do not compress the square,
not inscribed, but circumscribed about the FOV
region, the MA sizes become smaller by 1.4142 times,
i.e., many (up to rounding to integer numbers) of them
disappear. It is clear that if we transform the FOV
region to a smaller square, for instance, with a size of
224 × 224 pixels, as Noriega et al. [13] did for their
screening system, then a significant share of small
MAs are overlooked and the screening results become
less reliable. After such transformation, the size of one
pixel corresponds to approximately 34 μm.

The data given in Table 5 show that the image used
for classification must not be smaller than 512 ×
512 pixels. This is the minimum size permitting the
ION AND IMAGE ANALYSIS  Vol. 32  No. 2  2022
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Fig. 9. Distribution of minimum (black curve) and mean
areas of MAs in images from the DDR database in the
cropped square of 512 × 512 pixels.
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Fig. 10. Vertical sizes of ODs in the cropped square of
512 × 512 pixels.
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preservation of information about the MAs available
in the image.

CONCLUSIONS

We have studied the problem of choosing the opti-
mal template for representing a digital retinal image of
a human eye obtained by an arbitrary fundus-camera.
In order to be objective, as experimental data, we used
three databases created in different countries and con-
taining MA masks generated by experienced ophthal-
mologists. The MA sizes may take on values in the
range from 10 to 125 μm; i.e., they vary by more than
an order of magnitude, and, in the digital representa-
tion, the differences may increase by one more orders
of magnitude. For estimating the metric sizes of MAs
PATTERN RECOGNITION AND IMAGE ANALYSIS  V

Table 5. Sizes of MAs and ODs in images of the IDRID base

Image no. Number of МАs min h max h

01 18 12 34

01square 17 3 6

05 8 18 32

05square 6 4 7

09 54 15 48

09square 43 2 10

12 17 9 31

12square 15 1 6

15 7 11 23

15square 4 2 5

20 104 4 38

20square 77 1 10
in a digital image, we took the OD of a healthy human

eye height as a reference value; the size of this height is

similar in humans with normal eyes and is approxi-

mately 1880 μm. It is experimentally shown that, inde-

pendently of the conditions of photographing of the

retina, after cropping the square inscribed in the image

and reducing the square to the size of 512 × 512 pixels,

the image contains enough information for diagnosing

the presence of DR in screening study. The template of

the retinal image is universal and independent of the

type of the fundus-camera used, the photography

conditions, and the resolution of the obtained image.

This template allows the development of a universal

automated screening system of DR detection on the

basis of machine-learning systems.
ol. 32  No. 2  2022

min w max w h of OD 1 pixel in μm

12 33 548 3.43

2 6 113 16.63

15 34 562 3.34

3 7 119 15.80

14 54 618 3.04

3 10 131 14.35

10 30 683 2.75

1 6 129 14.57

12 28 613 3.06

3 6 129 14.57

5 29 579 3.24

1 8 122 15.41
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