2015

УДК 621.396.96

КОМПЕНСАЦИЯ УГЛОВЫХ И ДОПЛЕРОВСКИХ ИСКАЖЕНИЙ ДИСКРЕТНЫХ ЧАСТОТНО-МАНИПУЛИРОВАННЫХ СИГНАЛОВ С ЛИНЕЙНЫМИ ЧАСТОТНО-МОДУЛИРОВАННЫМИ ДИСКРЕТАМИ В АНТЕННЫХ РЕШЕТКАХ

Е.Н. БУЙЛОВ, С.А. ГОРШКОВ, В.А. КОНДРАТЁНОК, М.М. КАСПЕРОВИЧ

Военная академия Республики Беларусь Минск-57, 220057, Беларусь

Поступила в редакцию 19 января 2015

Проведен анализ особенностей влияния угловых и доплеровских искажений на результаты обработки дискретных частотно-манипулированных сигналов в широкополосных системах пространственно-временной обработки. Рассмотрены варианты компенсации данных видов искажений в линейных антенных решетках. В качестве дискретов частотно-манипулированного сигнала используются линейные частотно-модулированные сигналы.

Ключевые слова: дискретные частотно-манипулированные сигналы, широкополосная пространственно-временная обработка, антенная решетка, линейные частотно-модулированные дискреты.

Введение

В настоящее время для формирования большебазовых сигналов (ширина спектра сотни мегагерц – гигагерцы) часто используют дискретные частотно-манипулированные сигналы (ДЧМС) со ступенчатым законом изменения частоты [1–3]. Применительно к широкополосным системам (ШПС) пространственно-временной обработки существует ряд факторов, влияющих на результат обработки таких сигналов. Вариация углового положения цели относительно нормали линейной антенной решетки (АР) в рассматриваемых системах, приводит к возникновению временных запаздываний сигнала $\delta \tau$ между соседними приемо-передающими элементами, находящимися на взаимном удалении d [4–6]. В случае, когда фазовый набег превышает значение 2π , возникает необходимость использования дополнительной схемы временной задержки сигнала. Кроме того, для различных парциальных импульсов ДЧМС доплеровское смещение частоты в таких системах будет неодинаковым. При приеме отличие доплеровских частот в каждом дискрете приводит к разным скоростным ошибкам, и как следствие, к «размазыванию» сигнала по дальности (времени задержки) [7–9].

Компенсация угловых искажений в ШПС пространственно-временной обработки проще всего осуществляется использованием в ДЧМС линейных частотно-модулированных (ЛЧМ) дискретов. Использование рассматриваемых сигналов обеспечивает более гибкий выбор частотно-временных параметров. Широкие возможности цифровых синтезаторов частоты делает такое управление предпочтительным. Компенсация доплеровских искажений производится введением частоты коррекции на этапе обработки принятого сигнала.

В связи с этим определенный интерес представляет анализ способов повышения качества пространственно-временной обработки сверхширокополосных сигналов, основанных на компенсации угловых и доплеровских искажений ДЧМС с ЛЧМ дискретами.

№ 5 (91)

Искажения, обусловленные изменением углового положения целей относительно нормали антенной решетки

Рассмотрим особенности компенсации угловых искажений ДЧМС в широкополосной системе пространственно-временной обработки на излучение (передачу) и прием.

На рис. 1 приведена диаграмма Габора для одиночного ДЧМС с разомкнутыми ЛЧМ дискретами и следующими параметрами: $T_{\rm d}$ и $\Delta f_{\rm d}$ – длительность и ширина спектра одиночного ЛЧМ дискрета, соответственно; $\delta f_{\rm d}$ – шаг изменения несущей частоты; N – число дискретов; $T_{\rm nd}$ – период повторения дискретов; T_0 – длительность ДЧМС.

Рис. 1. Частотно-временная диаграмма Габора одиночного ДЧМС

Запаздывание ДЧМС по апертуре на излучение

В широкополосных сигналах (ШПС) пространственно-временной обработки, для которых выполняется условие $\Delta f_0 \Delta t_3 >> 1$ (Δt_3 – максимальное запаздывание сигнала по апертуре AP), необходимо компенсировать не только фазовые сдвиги между элементами AP (модуля), но и временные сдвиги между приемно-передающими модулями (ППМ).

Классическим вариантом управления угловым положением ДНА в рассматриваемых системах можно считать фазово-временной способ (РЛС «Кобра Дейн», [10]) (рис. 2).

Рис. 2. Модульная АР с комбинированным управлением

В таком случае, изменение углового положения ДНА одного ППМ осуществляется фазовым методом, а компенсация временных запаздываний сигнала между ними – управляемыми линиями задержки. Максимальное значение фазового набега определяется выражением $Kd\sin(\theta)$, где K – число элементов АР. Данный способ управления положением

ДНА характеризуется дискретностью. При этом наличие вспомогательного кабельного хозяйства вызывает дополнительное затухание излучаемого сигнала [10].

Для устранения указанных недостатков возможно применение законов модуляции излучаемого сигнала с различной задержкой (хранящихся в памяти постоянного запоминающего устройства), либо осуществляется управление частотным смещением зондирующих импульсов при использовании ДЧМС с ЛЧМ-дискретами. Свойства таких сигналов рассмотрены в [11]. Известно, что для ЛЧМ-сигнала существует частотно-временная

Рис. 3. Частотно-временная зависимость для фиксированного углового направления

Для согласования k-го модуля линейной AP с угловым направлением θ потребуется компенсировать временной сдвиг $\delta \tau_k = k d \sin(\theta)/c$. Рассматриваемый временной сдвиг эквивалентен частотному сдвигу (рис. 3): $\delta f_k(\theta) = \frac{\Delta f_{\perp} k d \sin(\theta)}{T_{\perp} c}$, где c – скорость света в вакууме.

Например, для ширины спектра $\Delta f_{\rm A} = 10$ МГц и длительности одиночного дискрета $T_{\rm A} = 2$ мкс, апертуры антенны 4 м и угла отклонения луча 30°, максимальное значение корректирующей поправки частоты составляет около $-\delta f_k(\theta) = 33,5$ кГц. Для ширины спектра $\Delta f_{\rm A} = 2$ МГц и длительности одиночного дискрета $T_{\rm A} = 100$ мкс, апертуры антенны 4 м и минимального угла отклонения луча от заданного направления, соответствующего точности его установки ~0,02°, минимальное значение корректирующей поправки частоты составляет около $-\delta f_k(\theta) = 0,1$ Гц. Очевидно, что для получения такой поправки необходимо иметь в составе радиопередающего тракта прецизионный цифровой формирователь частоты. Отметим, что компенсация временного сдвига $\delta \tau_k(\theta)$ между ППМ, определяемого угловым положением цели относительно нормали AP, может осуществляться при обработке принятого сигнала.

Запаздывание ДЧМС по апертуре на прием

На первом этапе корреляционно-фильтровой обработки производится частотная деманипуляция отраженного сигнала. Одновременно с этим необходимо произвести компенсацию временных запаздываний принимаемых ЛЧМ-дискретов. Для углового направления θ временные запаздывания отраженного сигнала в к -м ППМ $\delta \tau_k(\theta) = 2kd\sin(\theta)/c$ (с учетом временного сдвига сигнала при излучении) трансформируются в частотные характеризующиеся межпериодным слвиги. набегом фазы $\Delta \phi_{a_k}(\theta) = 2\pi \left(\frac{\Delta f_{\mathcal{A}} \delta \tau_k(\theta)}{T_{\Pi \Pi}}\right) T_{\Pi \Pi}$, где $\left(\frac{\Delta f_{\mathcal{A}} \delta \tau_k(\theta)}{T_{\Pi \Pi}}\right)$ – эквивалент доплеровского сдвига частоты.

Компенсация этих фазовых набегов $\Delta \varphi_{a_k}(\theta)$ в *n*-м периоде следования достигается умножением деманипулированного сигнала на $\exp(-jn\Delta \varphi_{a_k}(\theta))$.

Частотная поправка в k -м ППМ $\delta f_k(\theta)$, введенная ранее на излучение, компенсируется умножением сигнала на $\exp(-j2\pi \delta f_k(\theta)i\delta t)$. Здесь δt – интервал временной дискретизации принятого сигнала, определяемый шириной полосы одиночного частотного дискрета $\delta t \leq 1/\Delta f_{\rm d}$, i – его текущий номер от начала приема отраженного сигнала. Тогда, результирующая поправка, вводимая при обработке сигнала в *i*-м временном дискрете *n*-го периода повторения для k -го ППМ, имеет вид:

$$A_{i,n,k}(\theta) = \exp\left\{-j\left[2\pi\delta f_k(\theta)i\delta t + n\Delta\phi_{ak}(\theta)\right]\right\} = \exp\left\{-j2\pi\left(\frac{\Delta f_{\mu}i\delta t}{T_{\mu}} + 2n\Delta f_{\mu}\right)\frac{kd\sin(\theta)}{c}\right\}.$$

Таким образом, для компенсации угловых искажений в ШПС пространственновременной обработки требуется введение корректирующих поправок в каждый ППМ.

Искажения, обусловленные вариацией скорости движения целей

Доплеровский сдвиг частоты возникает за счет движения цели с радиальной скоростью \hat{V}_r , который для узкополосного сигнала компенсируется на центральной частоте f_0 . Для ДЧМС, во избежание возникновения искажений, такая компенсация требуется на разных участках спектра. Доплеровское смещение каждой *n*-й частотной составляющей определяется выражением: $F_{gn} = \frac{2\hat{V}_r}{c} f_n = \frac{2\hat{V}_r}{c} (f_0 + n\delta f_n)$, где f_0 – начальная частота.

Появление частоты Доплера в отраженном сигнале обусловлено трансформацией временного масштаба при рассмотрении взаимно перемещающихся систем координат (радиолокационной станции и наблюдаемого объекта). Приближение или удаление цели приводит к временному сжатию или растяжению отраженного от нее сигнала. В таком случае величина междупериодного временного сдвига ЛЧМ дискретов определяется выражением $\Delta t_r = 2T_{ng}\hat{V}_r/c$. Вариация длительности каждого парциального импульса можно не учитывать ввиду его малости. Например, для периода повторения 20 мкс междупериодный временной сдвиг составит около 1,1 нс, а общее растяжение сигнала, имеющего тысячу частотных дискретов, около 1,1 мкс.

Допустим что, начальная частота сигнала 10 ГГц, ширина спектра 1 ГГц, а максимальная скорость цели 8000 м/с. Тогда, относительно центрального значения частоты Доплера 560 кГц, частота коррекции для разных частотных составляющих сигнала должна изменяться в диапазоне ±26,7 кГц.

Ошибка определения радиальной скорости цели $\delta V_r = V_r - \hat{V_r}$ в ШПС пространственновременной обработки (при вычислении значений корректирующих частот F_{d_n} и междупериодных сдвигов Δt_r) приводит к радиальному смещению сжатого сигнала (если частота сигнала изменяется по ступенчатому закону) и снижению разрешения по дальности.

Величина «скоростного» смещения одиночного дискрета по дальности *п* определяется

с учетом значений периода повторения $T_{\Pi\Pi}$ и скачка частоты δf_{Π} : $r_V = -f_0 \frac{T_{\Pi\Pi}}{\delta f_{\Pi}} \delta V_r$.

Так как расширение сжатого импульса и уменьшение его амплитуды вызвано разницой радиальных смещений на каждой из частот, то разрешающая способность по дальности определяется с поправкой:

$$\Delta r = \frac{c}{2N\delta f_{\rm d}} + NT_{\rm fid}\delta V_r \,, \tag{1}$$

где $NT_{\Pi A} \delta V_r$ – скоростная поправка к разрешению по дальности.

На рис. 4, *а* приведен сжатый сигнал цели, состоящей из двух блестящих точек (БТ) разной амплитуды, после полной компенсации ее скорости движения. При этом БТ разнесены по дальности на 5 м. Параметры сигнала: полоса сигнала $\Delta f_0 = 1 \Gamma \Gamma \mu$ (потенциальное разрешение по дальности $\Delta r = 15$ см); радиальная скорость цели $V_r = 8$ км/с; шаг изменения частоты $\delta f_{\rm d} = 10 \Gamma \Gamma \mu$; база ДЧМС $B = 10^6$. На рис. 4, δ показан сжатый сигнал рассматриваемой цели при наличии ошибки определения радиальной скорости $\delta V_r = 100$ м/с. В этом случае наблюдается смещение радиолокационного портрета на величину около 4 м, уменьшение амплитуд БТ на 2–6 дБ и снижение разрешающей способности по дальности в 2–3 раза.

Рис. 4. Сжатый сигнал цели состоящей их двух БТ ($V_r = 8 \text{ км/c}$, $\Delta f_0 = 1 \Gamma \Gamma \mu$, $\delta f_{\mu} = 10 \Gamma \Gamma \mu$ и $B = 10^6$):

a – после полной компенсации движения; *δ* – при наличии ошибки компенсации δV_r =100 м/с
Частотные рассогласования изменяют наклон и форму горизонтального сечения тела
неопределенности широкополосных ДЧМС с ЛЧМ-дискретами (рис. 5) [12, с. 76–77].

Рис. 5. Диаграмма неопределенности широкополосного ДЧМС с ЛЧМ дискретами при наличии частотных рассогласований [12]

Зададимся 25 % ухудшением разрешающей способности по дальности с целью определения требований к ошибке оценки радиальной скорости объекта δV_r . Тогда из (1) получим

$$\delta V_r \le \frac{c}{8N\delta f_{\mathcal{A}}NT_{\Pi\mathcal{A}}} = \frac{c}{8B} \,. \tag{2}$$

Для базы ДЧМС $B = 10^6$ ошибка определения скорости цели не должна превышать

 $\delta V_r = 37,5$ м/с. Такие значения ошибок измерения скорости обеспечиваются не только в радиолокационных станциях (РЛС) сопровождения, но и РЛС обзора с трассовой обработкой.

Заключение

Применение ДЧМС в широкополосных системах пространственно-временной обработки приводит к необходимости компенсации угловых и доплеровских искажений. При использовании ЛЧМ-дискретов все пространственные и частотные искажения сводятся к временным и частотным сдвигам принимаемых сигналов.

Частотно-временная зависимость, соответствующая ЛЧМ-сигналам, позволяет управлять ДНА на излучение частотными сдвигами между модулями АР. Прием такого сигнала с заданного углового положения осуществляется посредством ввода эквивалентных корректирующих поправок в каждый ППМ по времени запаздывания (компенсирует временные запаздывания на передачу и прием) и частоте (компенсирует частотный сдвиг, введенный на передачу).

Учет доплеровских набегов в различных частотных дискретах целесообразно проводить в два этапа. На первом этапе компенсируется общий частотный сдвиг на частоте f_0 . На втором – компенсируются частотные добавки, зависящие от номера дискрета. Ошибки компенсации, возникающие за счет неточного оценивания частоты Доплера, приводят к ухудшению разрешающей способности по радиальной скорости.

INDEMNIFICATION OF ANGULAR AND DOPLER DISTORTIONS DISCRETE OF FREQUENCY MANIPULATED SIGNALS WITH THE LINEAR FREQUENCY-MODULATED IMPULSES IN ANTENNA ARRAYS

E.N. BUILOU, S.A GORSHKOV, V.A. KONDRATYONOK, M.M. KASPEROVICH

Abstract

The analysis of singularities of influence angular and Dopler distortions on results of handling of the discrete is frequency-keyed signals in broad-band systems of spatio-temporal handling is carried out. Variants of compensating of the given types of distortions in the linear antenna arrays are considered. As impulses of the frequency-manipulated signal the linear frequency-modulated signals are used.

Список литературы

- 1. Wehner D.R. // High-resolution Radar. Norwood, 1994.
- 2. Ultra-Wideband Radar Technology / Edited by Taylor J.D. New York, 2001.
- 3. Ширман Я.Д. // Труды АРТА. 1957. № 33.
- 4. Ширман Я.Д. // Разрешение с сжатие сигналов. М., 1974.
- 5. Кук Ч., Бернфельд М. // Радиолокационные сигналы. М., 1971.
- 6. Ширман Я.Д., Алмазов В.Б., Голиков В.Н. и др. // Радиотехника и электроника. 1991. № 1.
- 7. Радиоэлектронные системы: Основы построения и теория. Справочник. / Под ред. Я.Д. Ширмана. М., 2007.
- 8. Levanon N., Mozeson E. // Radar Signals. New Jersey, 2004.
- 9. Костас Д. // ТИИЭР. 1984. № 6.
- 10. Леонов С.А. // Радиолокационные средства противовоздушной обороны. М., 1988.
- 11. Буйлов Е.Н., Горшков С.А. // Докл. БГУИР. 2014. № 3 (81). С. 78–84.
- 12. Computer Simulation of Aerial Target Radar Scattering, Recognition, Detection, and Tracking / Edited by Y.D. Shirman. London. 2002.