AUTOMATED APPLICATION FOR LARGE SAMPLE
PROCESSING

Gusev S., Gudkov A.; Sharonava A.
Department of Information Technologies Automated Systems,
Belarusian State University of Informatics and Radioelectronics
Minsk, Republic of Belarus
E-mail: {st.al.gusev, gudkov.bsuir }@gmail.com, seizv@bsuir.by

The statement of the Central Limit Theorem is modeled on the example of large samples of the Laplace and the
beta distributions using Python toolkit and the advanced capabilities of Jupyter Notebook.

INTRODUCTION

The law of Large Numbers and the Central
Limit Theorem (CLT) are a generalization of the
thought processes of mankind over the past two
centuries [1]. Consequently, the authors decided to
consider in detail the CLT which sometimes it is not
always possible to find its graphical representation.
In this regard, authors conducted a study to ver-
ify the following statement [2]: if there is a random
variable (RV) X from almost any distribution, and
samples of volume N are randomly formed from this
distribution, then the distribution of sample aver-
ages can be approximated by a normal distribution
with an average value that coincides with the ex-
pected value of the outcome population.

I. TooLKIT

The task is to model the distribution of the
RV’s sample mean X at different sample volumes
and estimate its approximation with a normal
curve. To conduct the experiment authors chose
Laplace and beta distributions from which the sam-
ples will be randomly formed [3]. The formation of
samples, the calculation of their averages, the con-
struction of graphs and histograms is carried out
using the Python library toolkit: scipy module of
statistical functions scipy.stats, numpy, matplotlib.

II. LAPLACE DISTRIBUTION

Let us first consider the Laplace distribution
of a continuous RV X, the expected value and vari-
ance of which is calculated as follows:

E[X] = A, 1)

D[X] =2 xb% 2)

Here X is a location parameter and b > 0 is
a scale parameter. In our case A\ = 0, b = 50.
Using the statistical functions module of the scipy
library, an instance of the laplace_ gen class is cre-
ated with parameters corresponding to the above.
It’s called laplace rv and used for the entire study
regarding the Laplace distribution.From this dis-
tribution, we will select 100 pseudo-random val-
ues.This is easy to do by calling the rvs() method
with the sample size parameter. Also calling plot()
function(from matplotlib) and pdf() method (from

scipy.stats) we build Theoretical Probability Den-
sity Function (TPDF) and compare the obtained
sample results in the form of a histogram with the
TPDF graph of which corresponds to the blue line
in Figure 1.
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Figure 1 — The Laplace distribution with sample
volume of 100

Next, and this is the most important thing.
For three or more values of N, 1000 samples of vol-
ume N are generated, the arithmetic mean is calcu-
lated for each sample. A histogram of the obtained
sample means is constructed and a density graph of
the corresponding normal distribution is superim-
posed on top of it with parameters:

u = BX]. 3)
_ ./ P&X)
o=\ 5 (4)

Authors implemented the buildHistNorm-
Curve(azx, N, hCol) function for generating a nor-
mal distribution and visualizing histograms with
normal curve according to the sample size parame-
ter N [4].
def buildHistNormCurve(ax, N, col):

# list of sample means

los = np.array([np.mean(l_rv.rvs(N)) for i in range(10@0)])

# normal distribution

norm_rv = sts.norm(expected_value, (variance/N)**@.5)

# normal curve construction

x = np.linspace((-250 / N**@.4),
pdf = norm_rv.pdf(x)

ax.plot(x, pdf, lw=5, color='dodgerblue')

# histogram

ax.hist(los, bins=15, density=True, edgecolor='0"', color=col)
ax.grid(ls="dotted")

# undername

ax.set_xlabel('TPDF and Hist for N =

(250 / N**@.4), 1500)

'+ str(N), fontsize=14)

Figure 2 — Build histogram with normal curve function
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Let’s call it 4 times with the following values
of sample volume N: 3, 10, 50, 500. We get the
results shown in figure 3.
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Figure 3 — The result of CLT on the Laplace

III. BETA DISTRIBUTION

Also consider the beta distribution with the
following numerical characteristics:

()

af
(a+B)2(a+8+1)

Where a > 0, 8 > 0. The appearance of
the TPDF graph can vary greatly depending on the
above parameters: from similar to an exponent and
a parabola to an unusual curve, which we use, since
it differs as much as possible from a normal curve.
Let’s define this distribution with « = 8 = 0.7. In
the case of a beta distribution, an instance of the
beta_ gen class is created. Then the TPDF and the
histogram of the sample volume 100 takes the form
as in figure 4.
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Figure 4 — The beta distribution with sample volume
of 100

Having done the same actions with the sam-
ples as the previous paragraph, we obtain the fol-
lowing distributions of sample means.
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Figure 5 — The result of CLT on the beta

If to compare the beta and the Laplace dis-
tributions by criteria of graphical representations
(figures 1, 4) and formal ones (formulas 7, 8) they
exactly differ.

o) = o exp(—2 ) @
f@) = gage -

But it doesn’t matter how they’re distant from
the Gaussian, because the CLT gives an output dis-
tribution close to normal [5]. Moreover, the larger
the sample size, the more accurate the approxima-
tion.

CONCLUSION

In accordance with the graphical representa-
tion of the results, the following pattern is well
traced: with an increase in the sample size, the de-
gree of approximation of the distribution of sample
averages with a normal distribution also increases
and there is a concentration of pseudo-random vari-
ables around the mathematical expectation of the
initial distribution, which justifies the statement of
the CLT, therefore principle of increasing entropy
from a statistical point of view has led us to a fun-
damental conclusion: all closed macrosystems tend
to move from less probable to more probable states.
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