
Associative Semantic Computers for Intelligent
Computer Systems of a New Generation

Vladimir Golenkov and Daniil Shunkevich and Natalia Gulyakina
Valerian Ivashenko and Vadim Zahariev

Belarusian State University of Informatics and Radioelectronics
Minsk, Belarus

Email: {golen, shunkevich, guliakina, ivashenko, zahariev}@bsuir.by

Abstract—The paper considers the shortcomings of the
currently dominant von Neumann architecture of computer
systems as the basis for building intelligent computer systems
of a new generation, analyzes modern approaches to the
development of hardware architectures that eliminate some
of these shortcomings, substantiates the need to develop
fundamentally new hardware architectures, which are
hardware version of the implementation of the interpretation
platform for systems built on the basis of OSTIS Technology,
— associative semantic computers.

Keywords—OSTIS Technology, ostis-platform, platform
independence, ontology, associative semantic computer.

I. INTRODUCTION

For the development of ostis-systems, the use of modern
software and hardware platforms focused on address
access to data stored in memory is not always effective,
since when developing intelligent systems, it is actually
necessary to model nonlinear memory based on linear one.
Improving the efficiency of problem solving by intelligent
systems requires the development of specialized platforms,
including hardware ones, focused on unified semantic
models of information representation and processing.
Thus, the main purpose of creating associative semantic
computers is to increase the performance of ostis-systems.

II. CURRENT STATE OF DEVELOPING COMPUTERS FOR
INTELLIGENT SYSTEMS

The vast majority of modern software and hardware
platforms used in the development of modern computer
systems and, in particular, intelligent computer systems
are based on the principles of the abstract von Neumann
machine, or “von Neumann architecture” (see [1], [2]).
Let us consider the basic principles underlying the von
Neumann machine.

von Neumann machine
:= [abstract von Neumann machine]
∈ abstract information processing machine
⇒ underlying principles*:

⟨⟨⟨• [The information in memory is represented
as a sequence of strings of characters in
a binary alphabet (“0” or “1”).]

•

[The machine memory is a sequence of
addressable memory cells.]

• [Any string of characters in the binary
alphabet can be recorded to each cell. At
the same time, the length of the lines for
all addressable cells is the same (in the
current standard of cells, called bytes, it
is equal to 8 bits).]

• [Each memory cell uniquely corresponds
to a bit string that denotes this cell and
represents its address.]

• [To each type of elementary actions (oper-
ations) performed in the memory of the
von Neumann machine, its identifier is
uniquely assigned, which is also repre-
sented in memory as a bit string.]

• [Each specific operation (command) per-
formed in memory is represented (speci-
fied) in memory as a string consisting of
• the code of the corresponding type of

operation;
• the sequence of addresses of mem-

ory fragments containing operands on
which operations are performed – the
source arguments and results. Any such
fragment is specified by the address
of the first byte and the number of
bytes. The number of operands is
unambiguously set by the operation
type code.

]
• [A program running in memory is stored

in memory as a sequence of specifications
of particular operations (commands).]

• [Thus, both the processed data and the
programs for processing this data are
stored in the same memory (unlike, for
example, the Harvard architecture) and
are encoded in the same way.]

⟩⟩⟩

Let us consider in more detail the features of the logical

39



organization of the traditional (von Neumann) architecture
of computer systems, which significantly complicate the
effective implementation of ostis-systems based on it:

• sequential processing that limits the efficiency of
computers by the physical capabilities of the element
base;

• low level of access to memory, i.e. complexity
and awkwardness of performing the procedure of
associative search for the necessary fragment of
knowledge;

• linear memory organization and an extremely sim-
ple view of constructive objects directly stored in
memory. This leads to the fact that in intelligent
systems built on the basis of modern computers,
the manipulation of knowledge is carried out with
great difficulty. Firstly, it is necessary to operate
not with the structures themselves but with their
inconvenient linear representations (lists, adjacency
matrices, incidence matrices); secondly, the lineariza-
tion of complex structures destroys the locality of
their transformations;

• the representation of information in the memory
of modern computers has a level very far from
the semantic one, which makes the processing of
knowledge rather awkward, requiring consideration
of a large number of details concerning not the
meaning of the processed information but the way
it is represented in memory;

• in modern computers, there is a very low level of
hardware-implemented operations on non-numeric
data and there is no hardware support for logical
operations on knowledge fragments with a complex
structure, which makes manipulating such fragments
very difficult.

Attempts to overcome the limitations of traditional
von Neumann computers have led to the appearance of
many approaches associated with particular changes in the
principles of logical organization of computers, primarily
depending on the classes of problems and subject domains
that a particular class of computers focuses on. All these
tendencies, considered together, allow outlining some key
principles of the logical organization of computers focused
on the knowledge processing (knowledge processing
machines – KPM). Let us list the main of these tendencies:

• transition to nonlinear memory organization (see [3],
[4]) and hardware interpretation of complex data
structures (see [5], [6], [7]);

• hardware implementation of associative access to
information (see [3], [8], [9], [10], [11], [12], [13]);

• implementation of parallel asynchronous processes
over memory (see [3], [14]), and, in particular,
development of computing machines controlled by
data flow (see [15], [16], [17], [18]);

• hardware interpretation of high-level languages (see
[19], [20], [21]);

• development of database management hardware tools
(database processors) (see [22], [23], [24]).

At the intersection of these tendencies, different classes
of computing devices have appeared at different times.
Let us list some of them:

• machines with hardware interpretation of complex
data structures (see [6], [25], [26]);

• machines with developed associative memory (see
[10], [27], [28]);

• associative parallel matrix processors (see [29]);
• homogeneous parallel structures for solving combi-

natorial logic problems on graphs and hypergraphs
(see [30]);

• various graph processing devices (see [31], [32], [33],
[34]), in particular, based on FPGA (see [35], [36],
[37]) and vector processors (see [38]);

• systems that process information directly in memory
by evenly distributing functional means in memory
and, in particular, the processor-memory proposed
by M. Weinzweig, focused on solving artificial
intelligence problems (see [39], [40]);

• machines controlled by data flow (see [15], [18],
[29]) and, in particular, processors, that are recon-
figurable taking into account the semantics of the
input data flow (see [41]);

• recursive computing machines (see [3]);
• relational database processors (see [9], [18], [22]);
• computers with restructurable memory (see [42],

[43], [44], [45]);
• active semantic networks (M-networks) (see [46]);
• associative homogeneous environments (see [47]);
• neural-like structures (see [48], [49]). In recent

years, the active development of the theory of
artificial neural networks has led to the development
of various approaches to the building-up of high-
performance computers designed for training and
interpretation of artificial neural networks (see [50],
[51], [52]) and their implementation in various
software and hardware complexes. In a separate
direction, the so-called neuromorphic processors (see
[53]) are distinguished by high performance and low
power consumption.

• machines for interpreting logical rules (see [54]).
In addition, the development of graphics processors

(graphics processing unit, GPU) has led to the possibility
of organizing parallel computing directly on the GPU, for
which specialized software and hardware architectures
are being developed, for example, CUDA (see [55])
and OpenCL (see [56]). The advantage of the GPU in
this case is the presence of a large number of cores
within one GPU (compared to the central processor),
which makes it possible to effectively solve problems
with natural parallelism on such an architecture (for
example, operations with matrices). Works dedicated to
the principles of processing graph structures on the GPU

40



are also being developed (see [57], [58], [59]).
In general, it can be said that due to the increase

in the performance of modern computers, the number
of developments of specialized hardware solutions has
decreased in recent decades, since many complex comput-
ing problems can now be solved on traditional universal
architectures in an acceptable time. As shown above, the
exception is mainly specialized computers for processing
artificial neural networks and other graph models, which
is conditioned by the high demand for such models and
their complexity.

At the same time, most of these approaches (even
if they deviate far enough from the basic principles
of computer organization proposed by von Neumann)
implicitly retain the point of view of the computer as a
large arithmometer and thereby retain its orientation to
numerical problems. Works aimed at developing hardware
architectures, designed to process information represented
in more complex forms than in traditional architectures,
have not been widely distributed and used due, firstly,
to the specifics of the proposed solutions and secondly,
due to the lack of a common universal and unified
coding language for any information, in the role of
which within the OSTIS Technology, the SC-code acts, as
well as the appropriate proven technology for developing
software systems for such hardware architectures. Thus,
developers of such architectures often face the need to
develop specialized software for these architectures, which
ultimately leads to a strong limitation in the scope of
application of such architectures, since their use turns out
to be reasonable only if the complexity of developing
specialized software proves itself, taking into account the
low efficiency of solving the corresponding problems on
more traditional architectures.

The SC-code, which is the formal basis of the OSTIS
Technology, was originally developed as a language for
encoding information in memory of associative semantic
computers, so it originally contains principles such as
universality (the ability to represent knowledge of any
kind) and unification (uniformity) of representation, as
well as minimization of the Alphabet of the SC-code,
which, in turn, makes it easier to create a hardware
platform that allows storing and processing texts of the
SC-code.

The main methodological feature of the proposed
approach to the development of hardware implementation
tools for intelligent systems support is that such tools
should be developed not before but after the main terms of
the corresponding technology for the design and operation
of intelligent systems will be tested on modern technical
means. Moreover, within the OSTIS Technology, the
methodology of transition to new hardware tools has been
clearly thought out, which affects only the lowest level
of the technology – the level of implementation of the
basic semantic network processing machine (interpreter

of the SCP Language).
The project of the associative semantic computer has a

long history, the main stages of which are the following
ones:

• 1984 – at the Moscow Institute of Electronic Tech-
nology, V. Golenkov defended the PhD dissertation
on the topic “Structural organization and processing
of information in electronic mathematical machines
controlled by the flow of complex structured data”,
in which the basic principles of semantic associative
computers were formulated and considered (see
[60]).

• 1993 – the Goskomprom Commission carried out
successful tests for the prototype of the associa-
tive semantic computer developed on the basis of
transputers within the research project “Parallel
graph computing system focused on solving artificial
intelligence problems” (see [61], [62]).

• 1996 – V. Golenkov defended the doctoral disser-
tation on the topic “Graphodynamic models and
methods of parallel asynchronous processing of
information in intelligent systems” (see [63]).

• 2000 – at the Institute of Management Problems
of the Russian Academy of Sciences, P. Gaponov
defended the PhD dissertation on the topic “Models
and methods of parallel asynchronous processing of
information in graphodynamic associative memory”
(see [64]).

• 2000 – at the Institute of Software Systems of
the Russian Academy of Sciences, V. Kuzmitsky
defended the PhD dissertation on the topic “Princi-
ples of building a graphodynamic parallel computer
focused on solving artificial intelligence problems”
(see [65]).

• 2004 – at the Belarusian State University of Informat-
ics and Radioelectronics, R. Serdyukov defended the
PhD dissertation on the topic “Basic algorithms and
tools for information processing in graphodynamic
associative machines”, in which the basic software
of semantic associative computers was considered
(see [66]).

At the same time, despite the presence of a working
prototype of the associative semantic computer, based on
transputers, the main attention within the corresponding
project and other listed works was paid to the principles
of organizing distributed parallel processing of SC-code
constructions, in particular, the SCD Language (Semantic
Code Distributed) was developed for distributed storage
of SC-code constructions and the SCPD Language for
their distributed parallel processing. However, the general
principles of information storage and the general archi-
tecture of each of the processor elements (of transputers)
remained behind von Neumann. In particular, to encode
SC-code constructions in traditional address memory,
appropriate data structures have been developed, close to

41



those described in [67].
Thus, we can say that the reasonableness and necessity

of the development of the associative semantic computer,
as well as the competence of the authors in this field is
confirmed by more than 30 years of experience and a
number of successful projects in this direction, however, at
the same time, in the previous works, all the shortcomings
of the von Neumann architecture discussed above have
not been fully eliminated, and the development and
implementation of the associative semantic computer
project that eliminates these shortcomings remain relevant.

III. ANALYSIS OF EXISTING COMPUTING SYSTEM
ARCHITECTURES

As shown in the previous paragraph, in order to
overcome the shortcomings of existing computing system
architectures, including the von Neumann one, many dif-
ferent approaches have been proposed. When developing
new architectures and, in particular, the architecture of the
associative semantic computer, it is advisable to identify
the main features of classification and the corresponding
classes (types) of computing system architectures in
the form of an appropriate ontology. Let us consider
a fragment of such an ontology developed on the basis
of an analysis of existing solutions and the approaches
identified by its results.

architecture of a computing system
⇒ subdividing*:

{{{• architecture of a computing system with
global RAM
⇒ subdividing*:

{{{• architecture of a
computing system with
global data RAM

• architecture of a
computing system with
global program RAM

• architecture of a
computing system with
global program and data
RAM
⇒ note*:

[An example
of such an
architecture is
the von Neumann
architecture.]

}}}
• architecture of a computing system

without global RAM
}}}

⇒ subdividing*:
{{{• architecture of a computing system with a

single global internal memory

• architecture of a computing system with
multiple global internal memory

}}}
⇒ subdividing*:

{{{• architecture of a computing system with
restructurable interprocessor connections

• architecture of a computing system
without restructurable interprocessor
connections

}}}
⇒ subdividing*:

{{{• architecture of a computing system with
structurally evolving memory

• architecture of a computing system
without structurally evolving memory

}}}
⇒ subdividing*:

{{{• architecture of a computing system with
associative access to global (internal)
memory
⇒ note*:

[The associative type of access
is important in systems focused
on data storage with a complex
structure and focused on scalable
(including local) information pro-
cessing mechanisms.]

• architecture of a computing system
without associative access to global
(internal) memory

}}}
⇒ subdividing*:

{{{• architecture of a computing system with
addressable access to global memory
with linear address space
⇒ note*:

[Examples of such an architectures
are ones that are most used at the
moment, including the von Neu-
mann architecture. The problems
of device and data management
for such architectures are consid-
ered in the work [68].]

• architecture of a computing system
without addressable access to global
memory with linear address space

}}}
⇒ subdividing*:

{{{• architecture of a computing system with a
system of register data processing
commands
⇒ note*:

[Most of the architectures currently
in use are examples of architec-
tures of this class, including the

42



von Neumann architecture. Archi-
tectures with a system of register
data processing commands are
convenient for data management
problems both for image process-
ing systems in user interface prob-
lems and for machine learning
problems based on linear algebra
apparatus.]

• architecture of a computing system
without a system of register data
processing commands

}}}
⇒ subdividing*:

{{{• architecture of a computing system with a
command system for stack data
processing
⇒ note*:

[Examples of the application of
such an architecture are LISP ma-
chines (see [69], [70], [71]), other
examples can also be found in the
works [72], [73].]

• architecture of a computing system
without a command system for stack data
processing

}}}
⇒ subdividing*:

{{{• architecture of a computing system with
support for a command system for
processing generalized strings
⇒ note*:

[An example of such an archi-
tecture is the architecture that
supports the operations of the
generalized strings and lists pro-
cessing model proposed in the
work [74]. The underlying model
makes it possible to efficiently
perform operations not only on
strings and lists but also to work
with key-value relations in order
to integrate them into knowledge-
driven systems. The software im-
plementation of this model uses
B-trees.]

• architecture of a computing system
without support for a command system
for processing generalized strings

}}}
⇒ subdividing*:

{{{• architecture of a computing system with
support for a command system for
processing graph structures
⇒ note*:

[An example of such an architec-
ture is the architecture of the Leon-
hard computer (see [75]). This
computer is focused on processing
graph and hypergraph structures
of various types, including hier-
archical graphs (see [76]). The
representation is supported in the
form of strings and a list of ad-
jacent vertices, ordered local lists
of incident edges, and a global
ordered list of incident edges.]

• architecture of a computing system
without a support system for processing
graph structures

}}}
⇒ subdividing*:

{{{• architecture of a computer system with a
command system for (hardware)
knowledge processing
⇒ note*:

[An example of such an architec-
ture is the architecture of the Leon-
hard computer (see [75]). The
Leonhard computer supports the
DISC command systems (Discrete
Instruction Set Computing) (see
[76]). The DISC command system
supports the following commands:
creating an integer relation with a
schema that is a set of objects of
a formal context (the first domain
of a binary relation), whereas the
corresponding set of images is a
set of non-negative integers (the
second domain of a binary rela-
tion); adding a pair to a formal
context containing an object (key)
to be added, which is added as a
tuple by adding elements of this
tuple, together with an integer im-
age (value) for this object; getting
the next or previous object in a lin-
early (lexicographically) ordered
list of objects; getting the next
larger or previous smaller object
in a linearly (lexicographically)
ordered list of objects; getting
the minimum or maximum object
in a linearly (lexicographically)
ordered list of objects; getting the
number (cardinality of the set) of
images for a given object (key
tuple); searching pairs by key;
deleting pairs; deleting all pairs of

43



formal context, including objects
(keys) and images (values); a slice
(subset) of formal contexts; com-
bination, intersection, and comple-
mentation of formal contexts. B+
trees are used to represent the pro-
cessed data. Other architectures
consider the implementation of
knowledge processing operations
using a logical model of knowl-
edge representation (see [77]),
LISP structures (see [69], [70]),
generalized formal languages (see
[74], [78]). In the last case, for
the development of a system of
knowledge processing commands,
the transition from knowledge pro-
cessing to meta-knowledge pro-
cessing (based on the semantics of
becoming relevant and irrelevant)
is considered, the result of which
is a system of meta-operations
(see [78]).]

• architecture of a computer system without
a command system for (hardware)
knowledge processing

}}}
⇒ subdividing*:

{{{• architecture of a computing system with
adaptive data distribution
⇒ note*:

[Adaptive data distribution (includ-
ing, as a special case, virtual ad-
dress space) is important for data
(and knowledge) management and
virtualization problems for mul-
titasking and multi-user systems,
as well as also closely related to
the scalability capabilities of the
system.]

• architecture of a computing system
without adaptive data distribution

}}}
⇒ subdividing*:

{{{• architecture of a computing system with a
command system for non-local
information processing
⇒ note*:

[An example of such an architec-
ture is a cellular automaton. Ele-
mentary cellular (binary) automata
are divided into: ones rapidly tran-
sitioning into a homogeneous state
(a state consisting only of zeros or
units); rapidly transitioning into a

stable or cyclic state; remaining in
a chaotic (random) state; forming
both areas with a stable or cyclic
state and areas in which complex
interactions of elements of states
manifest themselves, up to Turing-
complete ones.

Information processing using cel-
lular automata allows building
computing systems, including
ones with a tunable (including
fractal-like) structure based on
local parallel (competitively) per-
formed simple rules. There are
varieties of cellular automata that
support irreversible, reversible,
deterministic, non-deterministic,
specialized, universal (including
Turing-complete) computations.
The work of cellular automata
resembles wave processes prop-
agating in the environment of
processor-memory elements of the
associative semantic computer,
considered below.]

• architecture of a computing system
without a command system for non-local
information processing

}}}
⇒ subdividing*:

{{{• architecture of a computing system with
strictly binary data representation in
RAM
⇒ note*:

[Most modern architectures of dig-
ital computing systems, includ-
ing implementations of the von
Neumann architecture, use binary
representation]

• architecture of a computing system with
not strictly binary data representation in
RAM

}}}
⇒ subdividing*:

{{{• architecture of a computing system with
strictly discrete data representation
⇒ note*:

[An example of such an architec-
ture is the von Neumann architec-
ture.]

• architecture of a computing system
without strictly discrete data
representation

}}}
⇒ subdividing*:

44



{{{• architecture of a computing system with
discrete data representation
⊂ architecture of a computing

system with strictly discrete data
representation

• architecture of a computing system
without discrete data representation

}}}
⇒ subdividing*:

{{{• architecture of a computing system with
data flow control
⇒ note*:

[Architectures of computing sys-
tems with data flow control are
seen as more natural when solving
many artificial intelligence prob-
lems. Variants of such architec-
tures are considered in the works
[]. The architecture of cellular
automata can be considered as
the architecture of a computing
system controlled by a data flow.]

• architecture of a computing system
without data flow control

}}}
⇒ subdividing*:

{{{• architecture of a computing system with
data flow control
⇒ note*:

[An example of such an architec-
ture is the von Neumann architec-
ture.]

• architecture of a computing system
without command flow control

}}}
⇒ subdividing*:

{{{• architecture of a computing system with a
processor with an arithmetic-logical unit
⇒ note*:

[An example of such an architec-
ture is the von Neumann architec-
ture.]

• architecture of a computing system
without a processor with an
arithmetic-logical unit

}}}
⇒ subdividing*:

{{{• architecture of a computer system with a
control unit with an instruction counter
⇒ note*:

[An example of such an architec-
ture is the von Neumann architec-
ture.]

• architecture of a computer system without
a control unit with an instruction counter

}}}
⇒ subdividing*:

{{{• architecture of a computer system with a
control unit with a command register
⇒ note*:

[An example of such an architec-
ture is the von Neumann architec-
ture.]

• architecture of a computer system without
a control unit with a command register

}}}
⇒ subdividing*:

{{{• architecture of a computing system with
an input-output device
⇒ note*:

[An example of such an architec-
ture is the von Neumann architec-
ture.]

• architecture of a computing system
without an input-output device

}}}
⇒ subdividing*:

{{{• architecture of a computing system with
access to an external (operational)
storage device
⇒ note*:

[An example of such an architec-
ture is the von Neumann architec-
ture.]

• architecture of a computing system
without access to an external
(operational) storage device

}}}
⇒ subdividing*:

{{{• architecture of a computing system with
scalable (modular) global memory
⇒ note*:

[Scalability as a feature of an ar-
chitecture is important for systems
focused on training (self-training)
in order to solve a wide class
of problems. Such architectures
can be focused on the processing
of knowledge structures integrated
into a single semantic space.]

• architecture of a computing system
without scalable global memory

}}}
⇒ subdividing*:

{{{• architecture of a computing system with
support for an active graph memory
model
⇒ note*:

[An active graph memory model
in the architectures of computa-

45



tional systems is important for the
efficient and consistent (conver-
gent) implementation of parallel
knowledge processing operations,
including mechanisms of excita-
tion and inhibition of knowledge
processing operations.]

• architecture of a computing system
without support for an active graph
memory model

}}}
⇒ subdividing*:

{{{• architecture of a computing system with
support for parallel information
processing
⇒ note*:

[Architectures of computing sys-
tems with support for parallel
knowledge processing are impor-
tant for the effective implemen-
tation of knowledge processing
processes (see [78]), improving
the performance and scalability
of knowledge processing systems,
including multi-agent systems in
the form of intelligent computer
systems and collectives of intel-
ligent computer systems. Various
models of architectures of com-
puting systems with support for
parallel knowledge processing are
considered in the work [65].]

• architecture of a computer system with
sequential information processing

}}}
⇒ subdividing*:

{{{• architecture of a computing system with
support for a sequential consistency
model of global RAM
⇒ note*:

[Architectures with support for con-
sistency models are focused on
solving the problem of control-
ling interacting processes, includ-
ing their synchronization and syn-
chronous and asynchronous mech-
anisms for running knowledge pro-
cessing algorithms. The purpose
of supporting a sequential consis-
tency model (see [78]) is to ensure
the existence of global states of
the knowledge base as structures
of a single semantic space in
intelligent computer systems. To
ensure a particular consistency

model, various mechanisms can
be used, considered in the works
[64], [66], as well as [67].]

• architecture of a computing system
without support of a sequential
consistency model of global RAM

}}}
⇒ subdividing*:

{{{• architecture with support for causal
memory consistency model
⇒ note*:

[The purpose of supporting the
causal consistency model (see
[78]) is to ensure interoperability
and convergence in a single se-
mantic space of knowledge struc-
tures of agents in collectives of
intelligent computer systems. To
ensure a particular consistency
model, various mechanisms can
be used, considered in the works
[64], [66], as well as [67].]

• architecture without support for causal
memory consistency model

}}}
⇒ subdividing*:

{{{• architecture of the computing system
asymmetric
⇒ note*:

[The architectures of computing
systems with asymmetry are im-
portant for the evolution of multi-
agent systems, intelligent com-
puter systems, and their collec-
tives, in which asymmetry is con-
sidered in a broad sense, includ-
ing as the heterogeneity of such
systems or collectives. A spe-
cial case of heterogeneity is the
heterogeneity of the architecture,
which allows implementing both
integrated and hybrid models of
knowledge processing within intel-
ligent computer systems and their
collectives.]

• architecture of the computing system
symmetric

}}}

To determine the architecture of associative semantic
computers, in accordance with the identified classes and
features, as well as the general principles underlying such
architectures, it is necessary to consider specific sets of
architectures within the appropriate feature space and
conduct a comparative analysis of the elements of these
sets in order to justify the choice of (optimal) architecture

46



variants for associative semantic computers.
At this stage of the work, several main variants for the

architecture of associative semantic computers have been
specified, which are considered in more detail below.

IV. GENERAL PRINCIPLES UNDERLYING ASSOCIATIVE
SEMANTIC COMPUTERS FOR OSTIS-SYSTEMS

The proposed approach to the development of the
associative semantic computer is based on the ideas
considered in the works of V. Golenkov (see [63]) and
developed in the work of V. Kuzmitsky [65].

When formalizing subject domains that have a rather
complex semantic organization, the processed data is
naturally grouped into some complex structures. The
efficiency of solving problems related to the processing
of complex structured data on multiprocessor computing
systems increases significantly when the structure of
the connections between the processor elements of the
computing system solving this problem coincides with
the structure of the data processed during its solution
(or, more generally, is displayed in the structure of
the processed data in a simple and natural way). With
the transition to data processing of an increasingly
complex structural and semantic organization (and then to
knowledge processing), the maintenance of high efficiency
of the computing system is ensured mainly by increasing
the number of processor elements working simultaneously
and complicating the structure of connections between
them (see [65]).

We will consider such a tendency in the development
of computer hardware as the main line of evolution that
creates prerequisites for the appearance of associative
semantic computers. It includes parallel regular special
processors (vector, matrix ones), special calculators for
solving problems on graphs, and hardware support for
semantic and neural networks. This line is also joined
by associative processors (in which associative memory
cells act as processor elements), database processors, and
computing systems that effectively solve certain classes
of problems due to the coincidence of the structure of
connections between processor elements with the structure
of the information graph of the algorithm (systolic
calculators, data flow machines) (see [65]).

A natural result of the development of computing
systems is the transition to systems that change the
structure of connections between processor elements in the
process of functioning. Such systems adjust their internal
structure to the structure of the processed data and the
information graphs of the algorithms of the problems
being solved and can solve different classes of problems
while maintaining high efficiency.

Thus, a developed computer focused on the knowledge
processing should generally be a collective of special
processors focused on the most effective solution of
certain classes of problems and have the following
features:

• Special processors are a multiprocessor computing
system.

• The structure of the connections between the pro-
cessor elements of special processors coincides with
the data structure or (less often) with the structure of
the information graph of the algorithm for solving
the problem.

• The connections between the processor elements of
special processors have a reconfigurable structure.

• The set and functions of special processors are
determined for each knowledge processing machine
specifically depending on the set of subject domains
that this machine is focused on and the specifics of
the problems solved in these domains.

• The set of knowledge processing mechanisms de-
termined for some semantic processor should be
“immersed” in the language of knowledge representa-
tion and processing. At the same time, the languages
of semantic networks seem to be the most convenient
for this purpose.

• Processor elements correspond to vertices or frag-
ments of a semantic network.

• Information processing is reduced to a change in the
structure of connections between processor elements,
corresponding to a change in the configuration of
the semantic network.

As a semantic special processor, we can propose a
nonlinear (graph) restructurable (dynamic) processor-
memory that implements some kind of semantic network
processing language in hardware, and the computer of
this kind itself can thus be called a graphodynamic
parallel associative computer, or an associative semantic
computer.

Taking into account the above, as well as the general
principles of information processing in ostis-systems
described in [67], let us consider more specifically the
principles underlying the implementation of associative
semantic computers:

• Nonlinear memory – each elementary fragment of a
text stored in memory can be logically incident to
an unlimited number of other elementary fragments
of this text. Thus, memory cells, unlike ordinary
memory, are connected not by fixed conditional
connections that specify a fixed sequence (order)
of cells in memory but by a logically or even
physically (using technical means of switching)
conducted connections of accidental configuration.
These connections correspond to arcs, edges, hyper-
edges of the graph (sc-text) recorded in memory.

• Restructurable (reconfigurable) memory – the opera-
tion of processing the information stored in memory
is reduced not only to changing the state of the
elements but also to reconfiguring the connections
between them. That is, during the processing of
information in restructurable memory, not only and

47



not even so much the states of memory cells change,
as is the case of ordinary memory, but the configu-
ration of connections between these cells. That is,
in restructurable memory, during the information
processing, not only the labels on the vertices of the
graph recorded in memory are redistributed, but also
the structure of this graph itself changes.

• As an internal way of encoding knowledge stored in
the memory of the associative semantic computer,
a universal (!) method of nonlinear (graph-like)
semantic representation of knowledge – SC-code
– is used.

• Information processing is carried out by a collective
of agents working on shared memory. Each of them
reacts to the corresponding situation or event in mem-
ory (a computer controlled by stored knowledge).

• There are software-implemented agents whose behav-
ior is described by agent-oriented programs stored in
memory, which are interpreted by the corresponding
collectives of agents.

• There are basic agents that cannot be software
implemented (in particular, these are agents of
interpretation of agent programs, basic receptor
agents-sensors, basic effector agents).

• All agents work on shared memory at the same time.
Moreover, if several conditions of its application
arise for an agent at some point in time in different
parts of memory, different information processes
corresponding to the specified agent in different parts
of memory can be run simultaneously.

• In order for information processes of agents running
in parallel in shared memory not to “interfere”
with each other, its current state is recorded and
constantly updated in memory for each information
process. That is, each information process informs
others about its intentions and wishes, which other
information processes should not interfere with. The
implementation of such an approach can be carried
out, for example, on the basis of the mechanism for
locking elements of semantic memory, considered
in [67].

• The processor and the memory of the associative
semantic computer are deeply integrated and form
a single processor-memory. The processor of the
associative semantic computer is evenly “distributed”
over its memory so that processor elements are
simultaneously computer memory elements. That is,
each cell is supplemented by a functional (processor)
element, and tunable connections between cells
become switched communication channels between
processor elements. At the same time, each processor
element has its own special internal register memory,
reflecting aspects of the current state of performing
elementary operations of the micro-program lan-
guage that provide interpretation of a higher-level

language (SCP Language) that are important for this
processor element.
Information processing in the associative semantic
computer is reduced to reconfiguration of com-
munication channels between processor elements,
therefore the memory of such a computer is nothing
but a switchboard (!) of the specified communication
channels. Thus, the current state of the configuration
of these communication channels is the current state
of the information being processed. This principle
provides a significant acceleration of information
processing by eliminating the stages of transferring
information from memory to the processor and back,
but it is paid for at the cost of a large redundancy
of processor (functional) means evenly distributed
over memory.

V. ARCHITECTURE OF ASSOCIATIVE SEMANTIC
COMPUTERS FOR OSTIS-SYSTEMS

associative semantic computer
⊂ computer with graphodynamic associative

memory
:= [associative semantic computer]
:= [sc-computer]
:= [hardware implemented basic interpreter of seman-

tic models (sc-models) of computer systems]
:= [hardware implemented ostis-platform]
:= [hardware variant of the ostis-platform]
:= [associative semantic computer controlled by

knowledge]
:= [computer with a nonlinear restructurable (grapho-

dynamic) associative memory, the processing of
information in which is reduced not to a change
in the state of memory elements but to a change
in the configuration of the connections between
them]

:= [universal computer of a new generation, specially
designed for the implementation of semantically
compatible hybrid intelligent computer systems]

:= [universal computer of a new generation, focused
on hardware interpretation of logical and seman-
tic models of intelligent computer systems]

:= [universal computer of a new generation, focused
on hardware interpretation of ostis-systems]

:= [ostis-computer]
:= [computer for the implementation of ostis-

systems]
:= [computer controlled by the knowledge repre-

sented in the SC-code]
:= [computer focused on processing SC-code texts]
:= [computer whose internal language is an SC-code]
:= [computer that implements sc-memory and inter-

prets scp-programs]
:= [our proposed new generation computer focused

on the implementation of intelligent computer

48



systems and using SC-code as an internal lan-
guage]

⇒ subdividing*:
{{{• scp-computer

:= [sc-computer that provides interpre-
tation of scp-programs]

⇒ generalized model*:
basic ostis-platform

• sc-computer with an extended set of
hardware-implemented sc-agents
:= [sc-computer that provides interpre-

tation of scp-programs]
⇒ generalized model*:

specialized ostis-platform
}}}

scp-computer
:= [minimum configuration of a hardware-

implemented ostis-platform, within which the
interpretation of scp-programs is provided]

:= [minimum configuration of a hardware-
implemented ostis-platform, within which only
basic sc-agents are implemented in hardware]

⇒ explanation*:
[Within the scp-computer, (1) sc-memory, (2)
basic sc-agents providing interpretation of scp-
programs, (3) elementary receptor sc-agents, (4)
elementary effector sc-agents are implemented
in hardware.]

To refine the architecture of associative semantic
computers, it is necessary to clarify:

• the basic structure of the computer and, in particular,
its processor-memory;

• the alphabet of elements stored in the processor-
memory of the computer;

• the system of commands interpreted by a computer;
• principles of controlling the process of interpreting

these commands;
• the system of micro-programs that ensure the im-

plementation of the principles for controlling the
specified process.

Since the internal language for encoding information
of the associative semantic computer is the SC-code,
the alphabet of elements stored in the processor-memory
of the computer coincides with the Alphabet of the SC-
code, considered in [67]. At the same time, the alphabet
of physically encoded syntactic labels can be expanded,
for example, for performance reasons, by analogy with
how it is done in the software implementation of the
ostis-platform [67].

As a command system for the associative semantic
computer, the SCP Language, discussed in detail in [67],
is proposed. Thus, as already mentioned in the specified
paragraph, the SCP Language is an assembler for the
associative semantic computer.

To determine the basic structure of the associative
semantic computer, let us clarify the variants of such
a structure proposed in the works of V. Golenkov and
V. Kuzmitsky (see [63], [65]). In particular, in the
work of V. Kuzmitsky, a transition from coarse-grained
architectures of graphodynamic machines to fine-grained
ones is proposed (see [65]).

Models of coarse-grained architectures have parallel
functioning modules with the following features:

• each module has a strictly fixed functional purpose
within the architecture of the graphodynamic ma-
chine as a whole (the so-called global functional
purpose);

• each module has a relatively large amount of memory
(the number of memory elements is much larger than
the total number of modules);

• the memory of each type of module has its own
non-elementary set of operations that perform some
completed transformations on sufficiently large frag-
ments of memory.

The main formal difference for models of fine-grained
architectures is a different ratio between the total number
of modules and the number of memory elements of
each module (module memory capacity), which tends
to unity, and the level of complexity of model operations.
Accordingly, the features of models of fine-grained
architectures can be considered as the following (see
[65]):

• For each module separately, its functional purpose
may not be viewed within the graphodynamic ma-
chine as a whole. At the same time, each separate
module at a particular time can have some so-
called local functional purpose, the corresponding
set of which can already be considered as having
a certain so-called global functional purpose within
the graphodynamic machine as a whole.

• The amount (number of elements) of memory of
each module is minimal and tends to unity. As a
result, the total number of modules is comparable to
the total number of memory elements of all modules.

• For each module (in general), the set of operations
performed on its memory is elementary and limited
(finite), since it affects only one element (or only
a few elements) of memory and is determined by
the obvious limitation (finiteness) in the semantics
of interpreting the contents of the graph memory
element in a graphodynamic machine.

The reasonableness of the transition from coarse-
grained to fine-grained architectures is conditioned by
a corresponding increase in the degree of potential
parallelism in knowledge processing procedures.

Taking into account the above, we can talk about several
options for clarifying the basic structure of the associative
semantic computer, each of which has certain advantages

49



and disadvantages. Let us consider these options in more
detail.

A. Architecture of an associative semantic computer
based on the von Neumann architecture

One of the most logical and architecturally simplest
options for the hardware implementation of the ostis-
platform is the implementation of means for storing SC-
code constructions and interpreting scp-programs at the
hardware level, similar to how it is done in software
versions of the ostis-platform based on modern computers
[67]. In this case, the overall architecture of the computer
remains behind von Neumann (with the explicit allocation
of a separate processor module and a separate memory
module). The main features of this implementation option
include the following ones:

• A memory module (implementation of sc-memory)
is a set of cells, each of which can store some sc-
element or can be empty. Each cell of such memory
has some unique internal address, similar to the
address of the von Neumann memory cells. At the
same time, when processing information stored in
such memory at the level of the command language
(SCP Language), unlike von Neumann memory,
cell addresses are not taken into account; access
to sc-elements is carried out strictly by incidence
relations between them. The exception is some key
sc-elements, the set of which is specified separately
and accessed by some other identifier, for example,
the system sc-identifier or the main sc-identifier for
some external language but not by address. It is
assumed that if some sc-element is stored in a cell,
it stores information characterizing this sc-element,
namely:
– a syntactic label specifying the type of the corre-

sponding sc-element;
– contents of the sc-file or a link to an external file

system (if the sc-file is stored);
– a list of the incidence relations of this sc-element

with other sc-elements, which actually means stor-
ing a set of memory cell addresses corresponding
to the sc-elements incident to this sc-element. The
specific list of types of stored relations can be
specified depending on the implementation. For
example, by analogy with how it is done in the
software implementation of the ostis-platform [67],
it is advisable to store in a memory cell the address
of the cell corresponding to the first sc-connector
incident to the corresponding sc-element with the
corresponding incidence type, and within the cell
corresponding to this sc-connector, to store the
address of the cell corresponding to the next sc-
connector, incident to the same sc-element with
the same incidence type, etc. With this approach,
the size of each memory cell can be fixed.

– a label of the sc-element lock indicating the label
of the corresponding process;

– an access level label and any other labels, if
necessary.

• The processor module implements a set of commands
corresponding to atomic types of scp-operators.

• To connect with the external environment, a terminal
module is introduced (see [63], [65]), which in
general can be implemented in different ways and
whose tasks are:
– to prepare (generate) information coming from

the external environment for its subsequent load-
ing into the processor module and the module
memory;

– to transfer (use, implement) information prepared
(received, represented) in the processor module
and memory module to the external environment.

• To store the contents of large sc-files, it may be
advisable to have a separate file memory built
according to von Neumann principles. Then the
semantic memory cells corresponding to such sc-
files will store not their contents directly but the
address of this file on the file memory.

• To implement the principles of multi-agent informa-
tion processing proposed within the OSTIS Technol-
ogy [67], it is necessary to implement (for example,
within the terminal module) an event registration and
processing subsystem that will allow the initiation
of sc-agents when the corresponding events occur
in memory.

The advantages of this implementation option include:

• Relative simplicity and low labor intensity of imple-
mentation compared to the development of the full-
fledged processor-memory variant discussed below.
In particular, with the availability of a stable version
of the ostis-platform software implementation, in
which at least the lower level is implemented
in sufficiently low-level languages, such as C, to
simplify the process of developing hardware archi-
tecture, it is possible to use automation tools for
the transition from C programs to descriptions in
hardware description languages (HDL, for example,
VSDL and Verilog), also known as “C to HDL”.
Popular tools and languages of this class include
LegUp (see [79]), VHDPlus (see [80]), SystemC
(see [81]), MyHDL for Python (see [82]), and many
others.

• Simplicity of integration with modern computer
systems, in particular, a hybrid variant can be con-
sidered, in which the associative semantic computer
is implemented as a separate plug-in module for a
modern computer designed to increase the efficiency
of processing sc-constructions.

The obvious key disadvantage of this option is its

50



orientation to the von Neumann architecture with all its
disadvantages listed above. In addition, in this option,
by default, parallel processing of sc-constructions is not
provided at the hardware level. This disadvantage is
partially eliminated in the next version of the coarse-
grained architecture of associative semantic computers.

B. Variant of the coarse-grained architecture of associa-
tive semantic computers

The goal of the transition to the coarse-grained archi-
tecture of associative semantic computers is to implement
parallel processing of sc-constructions at the hardware
level.

The main features of this implementation option include
the following ones:

• The associative semantic computer is divided into
several modules of the same type, arranged in a
similar way as the implementation option for the
associative semantic computer considered in the
previous paragraph, built on the basis of the von
Neumann architecture. Such modules will be called
“combined modules”, since such a module has its
own processor module and its own memory module
(storage module); there are no separately allocated
common processor modules. There may be a separate
shared memory module, into which, if necessary,
information that does not fit into the memory of a
particular combined module will be recorded.

• The terminal module that provides the connection of
the system of combined modules with the external
environment is still allocated.

• Separately, a file memory module can be allocated.
• The number of combined modules is relatively small

(2 – 16), each module is a sufficiently powerful
device (in fact, it is a separate associative semantic
computer), and, accordingly, one combined module
may be enough to solve problems of some classes.

• At the same time, in general, it is necessary to use
several combined modules to solve the problem. In
this case, the processed sc-construction is distributed
among several modules, for which sc-nodes-copies
are created, allowing for semantic communication
between fragments of the sc-construction stored
in different combined modules. To record such
constructions, an extension of the SC-code was devel-
oped, called SCD-code (Semantic Code Distibuted,
see [63], [65]), respectively, the constructions of
such a language were called scd-constructions, their
elements – scd-elements (scd-nodes, scd-arcs).

• Similarly, an extension of the SCP Language, called
the SCPD Language, was developed for processing
scd-constructions, taking into account the fact that
different fragments of the processed construction can
be physically stored in different combined modules.
At the same time, it is assumed that all elements of

the scd-construction representing an scpd-program (a
program of the SCPD Language) should be located
in the memory of one combined module, but each
scpd-program can have several complete copies in
different combined modules.

• To synchronize parallel information processing op-
erations, combined modules exchange messages
that can contain both fragments of processed scd-
constructions and commands of the SCDP Language.
Accordingly, the SCPD Language, in comparison
with the SCP Language, has additional tools that
support distributed processing of graph constructions
(see [63], [65]):
– The SCPD Language has built-in tools that allow

recognizing “your” and “foreign” combined mod-
ule; for this purpose, operators are introduced to
work with module identifiers.

– It is possible to create a copy of the scd-element in
the memory of another module. For this purpose,
a group of operators is introduced to work with
copies: creating a copy of the scd-element in the
specified module, transferring the connections of
the original element to the copy, gluing copies of
the element together, searching for a copy of this
element in a given module, etc.

– It is possible to explicitly call the scpd-program
remotely in the specified processor module. To
run the same processes performing in parallel
in different processor modules, operators are
specified, which run the program in modules from
the specified list.

– There are means of inter-process and intra-process
synchronization: message generation operators,
message waiting operators, process transfer opera-
tors in the waiting mode for completing execution
of distributed executing operators, waiting oper-
ators for completing execution of all distributed
executing operators.

• For message exchange, each combined module has
corresponding submodules that allow sending and
receiving messages, as well as a message buffer for
storing a queue of received messages waiting to be
processed and messages waiting to be sent.

• To interpret SCPD-programs, a family of micro-
programs is being developed in a language that gen-
erally depends on the selected hardware components
from which the combined modules are built.

The described implementation option for associative
semantic computers with coarse-grained architecture
also includes the previously mentioned multi-transputer
implementation (see [62], [63]). This implementation
is based on IBM PC 386 (486, Pentium) and 8 T805
transputers. In Figure 1, this implementation option
is schematically shown on 8 transputers, where each
transputer simultaneously performs the role of a switching

51



node (“SN”) and a processor module (“PM”) or a storage
module (“SM”). The entire system interacts with the
external environment through a terminal module (“TM”).

The main advantage of the coarse-grained architecture
of associative semantic computers is the orientation to
hardware support for parallel processing of SC-code
constructions. At the same time, this implementation
option has a number of disadvantages:

• Each combined module is built according to the
principles of the von Neumann machine, accordingly,
its disadvantages are not fully eliminated.

• Despite the preservation of the general principles
of the SC-code and SCP Language, distributed
storage and processing of sc-constructions requires
the development of separate language tools, such
as an SCD-code and SCPD Language, and their
support based on the selected hardware architecture.
In addition, as can be seen from the principles of the
SCPD Language discussed above, when developing
scpd-programs, it is necessary to explicitly take
into account the fact that processing is performed
distributed.

The next step from the point of view of the hierarchy
in the architectures of associative semantic computers
is the fine-grained architecture of associative semantic
computers.

C. Variant of the fine-grained architecture of associative
semantic computers

As already mentioned, the reasonableness of the tran-
sition from coarse-grained to fine-grained architectures is
conditioned by a corresponding increase in the degree of
potential parallelism in knowledge processing procedures.
At the same time, the maximum possible parallelism will
obviously take place with the maximum implementation
of fine-grained architectures in which one structural
module of processor-memory will correspond to one
memory element, that is, in our case, one sc-element.

Let us consider in more detail the principles underlying
the fine-grained architecture of the associative semantic
computer:

• The processor-memory of the associative semantic
computer consists of modules of the same type,
which will be called processor elements of sc-
memory, or simply processor elements. Each proces-
sor element corresponds to one sc-element (stores
one sc-element). At the same time, at any given
moment, each processor element can be empty
(not store any sc-element) or filled, that is, have
a mutually unambiguously corresponding stored
sc-element. At the physical level, an appropriate
attribute with two meanings is introduced to describe
this fact. Thus, each processor element is “responsi-
ble” for only one sc-element and, unlike the coarse-
grained version of the associative semantic com-

puter architecture, the problem cannot be solved by
one processor element, and the number of such
processor elements is quite large (corresponds to
the maximum possible number of sc-elements stored
in the knowledge base of some ostis-system). Expe-
rience in the development of applied ostis-systems
shows that, on average, the number of sc-elements in
the knowledge base of such an ostis-system ranges
from several hundred thousand to several million.
The situation when it is necessary to represent an
sc-construction within the processor-memory, the
number of elements of which is greater than the
number of processor elements, is not currently being
considered and requires additional research.

• Each processor element (by analogy with a mem-
ory cell in the case of the implementation of the
associative semantic computer on the von Neumann
architecture) has some unique internal identifier –
an address of the processor element. Addresses of
processor elements, unlike addresses of von Neu-
mann memory cells, do not provide direct access to
processor elements but allow unambiguously identify
the processor element when exchanging messages
according to the principles discussed below.

• Each processor element has a memory which stores:
– a syntactic label specifying the type of the corre-

sponding sc-element;
– the contents of the sc-file or a link to an external

file system (if this processor element corresponds
to the sc-file);

– a list of logical connections of this processor
element with others, that is, a list of addresses
of processor elements associated with this proces-
sor element by logical communication channels,
indicating the type of communication (for more in-
formation about logical communication channels,
see below);

– a label of blocking sc-elements, indicating the
label of the corresponding process;

– other labels, if necessary (for example, labels of
the access level to the stored sc-element);

– wave micro-programs run by this processor ele-
ment at the moment (for more information about
wave micro-programs, see below) and temporal
data for these micro-programs, as well as a queue
of micro-programs, if necessary.

• Processor elements are interconnected by two types
of communication channels – physical communica-
tion channels and logical communication channels:
– In general, the number of physical communication

channels for each processor element can be arbi-
trary, in addition, theoretically, physical communi-
cation channels between processor elements can
be rebuilt (reconnected) over time, for example, in
order to optimize the time of message transmission

52



SN SN SN

SN SN SN SN SN

PM PM PM

PM PM SM PM PM

TM

Figure 1. Example of implementing the coarse-grained architecture

between processor elements. The configuration
of physical communication channels is not taken
into account at the level of logical knowledge
processing, both at the level of the SCP Language
and at the level of the language of the micro-
programs, providing interpretation of commands
for the SCP Language, that is, scp-operators. For
simplification, within this work, we will consider
an option of the physical implementation of sc-
memory, in which each processor element has a
fixed and the same number of physical commu-
nication channels (N) for all processor elements,
while the configuration of such communication
channels does not change over time. Obviously,
the minimum value of N is 2, in this case we will
get a linear chain of processor elements. With N
equal to 4, we will get a two-dimensional “matrix”
of processor elements, with N equal to 6 – a
three-dimensional “matrix” of processor elements,
etc. As “adjacent” processor elements we will call
ones that are directly connected by a physical
communication channel.

– In this case, we can say that each processor
element has its own “address” (unique identifier)
in some multidimensional space, the number of
dimensions (features) of which is determined by
number N of physical communication channels
associated with one processor element. In the
examples above, the dimensionality of such a
space is N/2, which suggests that it is advisable
to make number N even-numbered.

– Each physical communication channel and each
logical communication channel are thus defined

by a pair of addresses of processor elements.
– Logical communication channels between pro-

cessor elements are formed dynamically and
correspond to incidence relations between sc-
elements. Thus, logical communication channels
can describe two types of incidence relations
– incidence of sc-pair designations with their
components and incidence of oriented sc-pair
designations with their second components [67].
At the same time, the configuration of logical
communication channels in general is not related
in any way to the configuration of physical
communication channels: incident sc-elements can
be physically stored in processor elements that
are not adjacent. At the same time, it is obvious
that, in general, some physical communication
channels may correspond to logical ones.

– In addition to the incidence relations, logical
communication channels can correspond to other
types of connections between sc-elements, by
analogy with how it is done in the software
implementation of the ostis-platform [67]. For
example, to simplify the implementation of search
algorithms in the knowledge base and reduce the
amount of memory that each processor element
should have, it is advisable to store in the memory
of the processor element the address of only the
first sc-connector incident to the corresponding
sc-element with the corresponding incidence type,
and within the processor element corresponding
to this sc-connector, the address of the next sc-
connector incident to the same sc-element with the
same incidence type, etc. With this approach, the

53



amount of processor element memory that stores
logical connections between processor elements
can be fixed.

• Each processor element can send messages (micro-
programs) to other processor elements and receive
messages from other processor elements via logical
communication channels and has corresponding
receptor-effector submodules. At the physical level,
messages are transmitted, in turn, via physical
communication channels, the configuration of which,
as mentioned above, is fixed and generally does not
depend on the configuration of logical communica-
tion channels.

• Thus, processor elements form a homogeneous
processor-memory, in which there are no separately
allocated modules designed only for storing infor-
mation and separately allocated modules designed
only for its processing.

• To connect such a processor-memory with the exter-
nal environment, a terminal module is introduced,
which in general can be implemented in different
ways and whose tasks are:
– preparation (generation) of information coming

from the external environment for its subsequent
loading into processor modules;

– transfer (use, implementation) of information pre-
pared (received, represented) in processor modules
to the external environment.

• To store the contents of large sc-files, it may be advis-
able to have a separate file memory associated with
processor-memory and built according to traditional
von Neumann principles. This is conditioned by the
fact that the main purpose of building-up processor-
memory is to ensure as much parallelism as possible
when processing SC-code constructions, while in the
case of storing and processing the contents of sc-files,
which by definition are information constructions
external to the SC-code, it is advisable to use modern
traditional approaches.

These principles allow formulating a key feature of
processing information stored within such a processor-
memory. Unlike the von Neumann architecture (and
other architectures developed around the same time, for
example, the Harvard architecture) and even from the
ostis-platform software version, the proposed processor-
memory architecture has no shared memory available
for all modules that process information. Due to this,
parallel processing of information is greatly simplified,
but the implementation of a set of micro-programs for
interpreting information processing commands in such
memory becomes more complicated, since each processor
element becomes very “short-sighted” and “sees” only
those processor elements that are connected to it by
logical communication channels.

Thus, the language for describing the micro-programs

for interpreting commands of the associative semantic
computer cannot be built as a traditional programming
language, for example, of a procedural type, since all
such languages assume the possibility of direct address or
associative access to random memory elements. The pro-
posed micro-program description language is proposed to
be built according to the principles of wave programming
languages (see [83], [84]) and insertion programming
(see [85], [86]).

Within such a micro-programming language, two types
of waves are distinguished:

• waves transmitted only via logical communication
channels (for example, when searching for incident
sc-elements);

• waves transmitted over all communication channels
(for example, when creating new logical communi-
cation channels, that is, when generating new sc-
elements).

Let us consider in more detail the principles for
interpreting commands (of scp-operators) within the
processor-memory considered above:

• Each processor element can interpret some limited
set of micro-programs. Taking into account the fact
that one processor element corresponds to one sc-
element, the set of operations associated with the
transformation of this sc-element is very limited
(generate an sc-element of the specified type, delete
an sc-element, change the contents of the sc-file, set
or remove the lock label, etc.). Thus, an important
task of the processor element is to generate messages
for other processor elements and send them.

• Each processor element can generate and store
temporary data for micro-programs in memory. It is
assumed that the amount of memory available to the
processor element is sufficient to represent all the
necessary data for a possible set of micro-programs,
since such micro-programs are quite simple (see
the previous principle). In case, for some reason,
overflow still occurs, then various approaches can
be used, for example, described in the work [65].

• Each processor element can form a micro-program
and send it as a wave message for running by
other processor elements. Messages are transmitted
via physical communication channels. Since the
configuration of physical communication channels is
generally not related to the configuration of logical
communication channels, each processor element
independently decides whether to run the micro-
program and transfer it further. Here we can draw
an analogy with the wave algorithm for finding a
path in a graph (a variant of the breadth search).

• Frequently, processor elements will not run the
micro-program but transmit it further, thus, the
processor elements themselves also perform the
role of switching elements, while, in general, each

54



processor element can enter an arbitrary number
of routes when transmitting messages through log-
ical communication channels between processor
elements.

• As in the case of the coarse-grained architecture, each
processor element has a queue of micro-programs to
be run (incoming messages) and a queue of micro-
programs to be sent (outgoing messages). At the
same time, within each processor element, it is also
possible to talk about the possibility of performing
any operations in parallel (for example, generating
outgoing messages and processing the current stored
sc-element).

Accordingly, a good case can be made about the
existence of a hierarchy of micro-programs:

• Micro-programs for changing the stored sc-element:
– perform the specified transformation of the con-

tents of this sc-node;
– change the label of the sc-element type (if such

a change does not contradict the Syntax of the
SC-code);

– replace the lock of this sc-element for the specified
process (including removing the label);

– delete the sc-element.
• Micro-programs for processing sc-elements stored in

others (not necessarily adjacent processor elements):
– generate an incident sc-connector (and a new

logical communication channel), possibly together
with an adjacent sc-element;

– generate both or one sc-element connected by this
sc-connector;

– find all sc-connectors (that is, the addresses of
their corresponding processor elements) of the
specified type, incident to this sc-element by the
specified incidence type;

– find sc-nodes incident to this sc-connector.
• Micro-programs for managing the running processes

of other micro-programs:
– forward the specified micro-program for running

from this processor element through all specified
channels (incident sc-connectors of the specified
type) to all adjacent sc-elements of the specified
type;

– wait for the running of the specified type of micro-
programs generated by the specified processor ele-
ment and transmit the result of their running to the
processor element that requested the appropriate
information.

• And others.
Obviously, when solving a specific problem, these

micro-programs can be combined into more complex
micro-programs. The above hierarchy is not complete at
the moment and requires further clarification.

Based on the principles represented, a hierarchy of

programming languages is formed for the proposed fine-
grained architecture of associative semantic computers:

• The SCP Language, independent of the implemen-
tation of the ostis-platform, on which the pro-
grams of sc-agents of knowledge processing are
written. The SCP Language is a “watershed” be-
tween the platform-dependent part and the platform-
independent part of the ostis-system, so it is the
lowest-level language among all possible platform-
independent languages and at the same time a high-
level language from the point of view of the ostis-
platform.

• The language of the micro-programs that the proces-
sor elements exchange with each other and which
are run by these processor elements. In fact, an
interpreter of the SCP Language is being developed
in this language. It is important to note that the micro-
program language is focused on the transmission
of messages via logical communication channels
and does not take into account the configuration of
physical communication channels. For this, another
lower-level language is introduced.

• A language for writing programs for managing
processes of exchanging messages (micro-programs).
The introduction of such a language is necessary
because, as it was said, the micro-programming
language itself does not take into account:
– Configuration of physical communication chan-

nels. Thus, when sending a message via a logical
communication channel, it is necessary to generate
the necessary number of messages depending
on the number of available physical communi-
cation channels, encode the transmitted message
for transmission over a physical communication
channel, transmit a message taking into account
that the same physical communication channel
can generally be included in an arbitrary number
of routes between processor elements, decode
the message on the receiving processor element.
All these problems require the development of
appropriate programs.

– Queuing incoming and outgoing messages inside
the processor element, adding messages to the
queue, extracting messages from the queue for
execution, etc.

Advantages of the proposed fine-grained architecture
variant of associative semantic computers:

• Within the proposed fine-grained architecture, unlike
coarse-grained one, there is no need to create
copies of sc-elements and to develop special coding
languages for the resulting constructions, such as the
SCD-code, since each processor element stores one
atomic fragment of the entire stored sc-construction,
and the number of logical connections with other
processor elements is unlimited.

55



• The above clearly distinguished hierarchy of pro-
gramming languages makes it possible to exclude at
the level of development of user programs (in the
SCP Language and higher-level languages based on
it) the need to take into account the fact of distributed
storage of sc-constructions and the general principles
of organizing the ostis-platform. In other words,
the development of languages such as the SCPD
Language is not required.

• The extensibility of the architecture makes it easy to
increase the number of processor elements without
significantly reducing performance, since there are
no explicitly allocated processor modules and storage
modules in the proposed architecture, respectively,
the need to transfer information between such
modules is eliminated; in addition, the processor
module ceases to be a shared resource for a large
number of simultaneously run processes. All of
the above will eventually solve the problem known
as the “bottleneck” problem of the von Neumann
architecture (see [87]).

• The key advantage of the proposed fine-grained ar-
chitecture is its orientation to the maximum possible
support for parallel information processing at the
hardware level and, ultimately, the possibility of
implementing any parallelism models taking into
account the problem being solved. In support of
this thesis, we can cite the theory of A-systems
described in the work of V. Kotov and A. Narinyani
[88]. According to the authors, this concept should
be interpreted as a universal model for a certain class
of parallel systems, which requires clarification in the
case of specific implementations. In particular, within
this theory, processor elements are distinguished,
activation/deactivation of which is carried out by
means of the so-called trigger function, which takes
the values 0 and 1. It is clear that in a particular
implementation, any attribute with the values “true”
and “false” can be used as such a function, indi-
cating that a particular processor element should
be activated at the next moment in time. The
authors show the possibility of formalizing any
parallel algorithms based on this model, consider the
possibility of reducing such algorithms to sequential
ones, synchronization options within such a model.
An obvious parallel can be drawn between A-
systems and the proposed fine-grained architecture of
associative semantic computers, taking into account
the presence of a wave programming language:
– processor elements from the theory of A-systems

correspond to processor elements of the processor-
memory;

– in the role of trigger functions for processor
elements, the micro-programs act, transmitted by
waves from one processor element to another and,

accordingly, activating the activity of processor
elements.

It is worth noting that despite the fact that the
considered work on the theory of A-systems has been
known for more than half a century, the authors of
this work failed to implement the ideas of this theory
in hardware. In our opinion, this is conditioned by the
fact that the level of development of microelectronics
at that time did not meet the requirements necessary
for the implementation of the theory of A-systems.

Together with the listed advantages, we can highlight
the key disadvantage for the proposed fine-grained version
of the architecture of associative semantic computers,
which consists in a strong dependence of the processor-
memory performance on the time of transmission of
wave micro-programs from one processor element to
another. At the same time, since at the logical level
messages are transmitted via logical communication
channels and in reality – via physical communication
channels, the processor-memory performance will depend
on how closely the configuration of logical communica-
tion channels corresponds to the configuration of physical
communication channels. Obviously, in the general case,
one-to-one correspondence of these configurations is
impossible, since the number of physical communication
channels incident to a given processor element is limited,
unlike the number of logical communication channels.
Nevertheless, there are several options for optimizing the
placement of sc-constructions in the processor-memory:

• When recording (“stacking”) sc-constructions into
processor-memory (especially in the case of suf-
ficiently large sc-constructions), it is possible to
take into account the semantics of the fragments
being recorded and write them in such a way that
those sc-elements, to which the message will be
transmitted from this sc-element most likely, were
physically closer to this sc-element. So, for example,
it is possible to take into account the denotational
semantics of searching scp-operators, which are
focused on processing three-element sc-constructions
and five-element sc-constructions, as well as store
sc-elements incident to a given sc-connector as close
to it as possible.

• If the number of logical connections between the
elements of the sc-construction does not exceed
the number of available physical communication
channels of the processor element and the sc-graph
is planar (although the sc-graph is not a classical
graph, we can talk about its planarity by analogy with
the planarity of classical graphs), then it is possible
to write the sc-construction to the processor-memory
in such a way that the configuration of logical
communication channels mutually uniquely corre-
sponds to some subset of physical communication
channels. Thus, it is relevant to develop algorithms

56



for optimal “stacking” of sc-graphs into processor-
memory to ensure the subsequent efficiency of
message transmission between processor elements.

• Since the configuration of logical communication
channels changes during the processing of sc-
constructions, it is also advisable to talk about
the development of algorithms for repositioning
(“defragmentation”) of the sc-construction already
recorded in the processor-memory in order to ensure
the subsequent efficiency of message transmission.
Such reallocation can be performed, for example,
according to a schedule during a period when the
processor-memory is not used for solving other
problems.

• In addition, if there is a hardware capability, the phys-
ical communication channels can also be re-switched
in order to approximate their configuration to the
configuration of logical communication channels.

Let us consider an example of the optimal variant
of writing the simplest five-element sc-construction into
the proposed processor-memory within the fine-grained
architecture of associative semantic computers.

In Figure 2, the record of some five-element sc-
construction in the SCg-code is shown.

Figure 2. SCg-text. Example of a five-element sc-construction

In Figure 3, an incidence graph for the same five-
element sc-construction is shown, which allows reducing
the sc-construction to a classical graph with two types
of connections. For clarity, the syntactic types of the
corresponding sc-elements are not shown in the Figure.

e1 e2

a2

R1

a1

Figure 3. Incidence graph for a five-element sc-construction

In Figure 4, one of the possible optimal options for
recording the resulting incidence graph into processor-
memory is shown. Dotted lines show physical communi-
cation channels between processor elements, solid lines
show physical communication channels corresponding to
logical communication channels. Note that it is advisable
to record element R1 in the processor element adjacent

to the processor element storing element e1 or element
e2, as shown in the Figure. Due to this, the processor
elements storing the specified sc-elements are directly
connected by a physical communication channel, which
simplifies communication in the case of sending messages
via physical communication channels without taking into
account logical communication channels.

e1 e2a1

a2R1

Figure 4. Example of stacking an sc-construction into a processor-
memory

VI. CONCLUSION

In the article, the disadvantages of the currently
dominant von Neumann architecture of computer systems
as a basis for building-up intelligent computer systems of
a new generation are considered, the analysis of modern
approaches to the development of hardware architectures
that eliminate some of these disadvantages is carried
out, the need for the development of fundamentally
new hardware architectures representing a hardware
implementation of ostis-platforms – associative semantic
computers – is demonstrated.

The general principles underlying associative semantic
computers are proposed, three possible variants of the
architecture of such computers are considered, their
advantages and disadvantages are represented.

Further development of the approaches proposed in
the work requires solving a number of problems, both
technical and organizational ones:

• development of a wave language for recording micro-
programs, that are exchanged between processor
elements and run by these processor elements;

• development of a language for writing programs
for controlling the exchange of micro-programs and
managing the queue of micro-programs;

• organization of active participation of specialists
in the field of microelectronics in clarifying the
principles of implementation of processor elements

57



and processor-memory in general, clarifying the
element base and lower-level architectural features
of associative semantic computers;

• development of algorithms for optimizing the ways
of recording sc-constructions to processor-memory
and repositioning already recorded sc-constructions
in order to ensure the subsequent efficiency of
message transmission between processor elements;

• clarification of the typology of information processes
in the processor-memory, their features, and the
corresponding typology of labels;

• clarification of the principles of implementing multi-
agent knowledge processing within the processor-
memory, in particular, the development of principles
for implementing event-based information processing
in such memory.

ACKNOWLEDGMENT

The author would like to thank the research groups of
the Departments of Intelligent Information Technologies
of the Belarusian State University of Informatics and
Radioelectronics and the Brest State Technical University
for their help in the work and valuable comments.

REFERENCES

[1] J. von Neumann, “First draft of a report on the EDVAC,” IEEE
Annals of the History of Computing, vol. 15, no. 4, pp. 27–75,
1993.

[2] M. D. Godfrey and D. F. Hendry, “The computer as
von Neumann planned it,” IEEE Annals of the History of
Computing, vol. 15, no. 1, pp. 11–21, 1993. [Online]. Available:
https://doi.org/10.1109/85.194088

[3] V. Glushkov [et al.], Rekursivnye mashiny i vychislitel’naya
tekhnika [Recursive machines and computer engineering]. IC of
the Academy of Sciences of the Ukrainian SSR, 1974.

[4] J. Aylif, Principy postroeniya bazovoj mashiny [Principles of
building the basic machine]. Mir, 1973.

[5] D. Moldovan, W. Lee, C. Lin, and M. Chung, “SNAP: Parallel
Processing Applied to AI,” Computer, pp. 39–49, 1992.

[6] Y. Chu, “Evolution of computer memory structure,” Proc. National
Computer Conf. AFIPS Press, pp. 733–748, 1976.

[7] L. Kalinichenko and V. Ryvkin, Mashiny baz dannyh i znanij
[Database and knowledge machines]. M. : Nauka, 1990, (In
Russ.).

[8] J. Martin, Organizaciya baz dannyh v vychislitel’nyh sistemah:
Per. s angl. [Organization of databases in computing systems:
Trans. from English]. Mir, 1980.

[9] E. Ozkarahan, Mashiny baz dannyh i upravlenie bazami dannyh
[Database machines and database control]. Mir, 1989.

[10] T. Kohonen, Associativnaya pamyat’: Per. s angl. [Associative
memory: Trans. from English]. Mir, 1980, (In Russ.).

[11] V. Ignatushchenko, “K postanovke zadachi povysheniya effek-
tivnosti vychislitel’nyh sistem na osnove associativnyh metodov
obrabotki informacii [To the formulation of the problem of
increasing the efficiency of computing systems based on associa-
tive methods of information processing],” Voprosy kibernetiki.
Mnogoprocessornye vychislitel’nye sistemy s perestraivaemoj
strukturoj (Arhitektura. Struktura. Primeneniya) [Questions of
cybernetics. Multiprocessor computing systems with a tunable
structure (Architecture. Structure. Applications)], pp. 14–21, 1981.

[12] S. Berkovich, Yu. Kochin, and V. Molchanov, “Ob effektivnosti
primeneniya associativnoj pamyati v vychislitel’nyh procedurah
[On the effectiveness of using associative memory in computational
procedures],” Vychislitel’nye sistemy. Vyp. 62. [Computing systems.
Issue 62.], pp. 97–105, 1975.

[13] M. Aizerman, L. Gusev, S. Petrov, and I. Smirnova, “Dinamich-
eskij podhod k analizu struktur, opisyvaemyh grafami (osnovy
grafodinamiki) [Dynamic approach to the analysis of structures
described by graphs (fundamentals of graph dynamics)],” Av-
tomatika i telemekhanika [Automation and telemechanics], no.
7/8, pp. 135–151/123–136, 1977.

[14] G. Marchuk [et al.], Modul’naya asinhronnaya
razvivayushchayasya sistema: V 2-h ch. [Modular asynchronous
developing system: In 2 parts]. Academy of Sciences of the
USSR. Sib.department. Computing Center, 1978.

[15] I. Prangishvili and G. Stetsyura, “Sovremennoe sostoyanie prob-
lemy sozdaniya EVM s netradicionnoj strukturoj i arhitekturoj,
upravlyaemyh potokom dannyh [Current state of the problem
of creating computers with an unconventional structure and
architecture controlled by the data flow],” Izmerenie, kontrol’,
avtomatizaciya [Measurement, control, automation], no. 1, pp.
36–48, 1981.

[16] Y. Zatuliver and I. Medvedev, “Voprosy postroeniya i mno-
goprocessornoj realizacii yazyka strukturno-parallel’nogo pro-
grammirovaniya s upravleniem potokami dannyh [Issues of
building and multiprocessor implementation of a structurally
parallel programming language with data flow control],” Vo-
prosy kibernetiki. Mnogoprocessornye vychislitel’nye sistemy s
perestraivaemoj strukturoj (Arhitektura. Struktura. Primeneniya)
[Issues of cybernetics. Multiprocessor computing systems with
a tunable structure (Architecture. Structure. Applications)], pp.
123–166, 1981.

[17] W.B. Ackerman, “Data flow language,” Proc. National Computer
Conf. AFIPS Press, pp. 1087–1095, 1979.

[18] G. Myers, Arhitektura sovremennyh EVM: V 2-h kn. Kn. 2. / Per.
s angl. [Architecture of modern computers: In 2 books. Book 2. /
Transl. from English.]. Mir, 1985.

[19] V. Glushkov, “Fundamental’nye issledovaniya i tekhnologiya
programmirovaniya [Fundamental research and programming
technology],” Programmirovanie [Programming], no. 2, pp. 3–13,
1980.

[20] V. Glushkov, S. Pogrebinsky, and Z. Rabinovich, “O razvi-
tii struktur mul’tiprocessornyh EVM s interpretaciej yazykov
vysokogo urovnya [On the development of multiprocessor com-
puter structures with interpretation of high-level languages],”
Upravlyayushchie mashiny i sistemy [Control machines and
systems], no. 6, pp. 61–66, 1978.

[21] Z. Rabinovich, “O koncepcii mashinnogo intellekta [About the
concept of machine intelligence],” Kibernetika i sistemnyj analiz
[Cybernetics and system analysis], no. 2, pp. 163–173, 1995.

[22] I. Zadykhailo [et al.], Proekt associativnogo parallel’nogo proces-
sora na CMD, orientirovannogo na podderzhku relyacionnyh baz
dannyh [Project of an associative parallel processor on the CMD,
focused on the support of relational databases]. Academy of
Sciences of the USSR. Institute of applied mathematics, 1979.

[23] S. Schuster, H. Nguyen, E. Oskarachan, K. Smith, “RAP.2 – an
associative processor for databases and its applications,” IEEE
Trans. on Computers, no. 6, pp. 446–458, 1979.

[24] E. Suvorov and Ya. Fet, “Processory baz dannyh [Database pro-
cessors],” Iss. of the USSR Academy of Sciences. Tech. Cybernet.,
no. 6, pp. 63–75, 1985.

[25] H.J. Brukle, “High level language oriented hardware and post –
von Neumann era,” Proc. 5-th Symp Computer Architecture, pp.
60–65, 1978.

[26] Y. Chu, “Architecture of a hardware data interpreter,” Proc. 4-th
IEEE Symp. on Computer Architecture, pp. 1–9, 1977.

[27] T. Kohonen, Associativnye zapominayushchie ustrojstva: Per. s
angl. [Associative storage devices: Trans. from English.]. Mir,
1982.

[28] K. Foster, Associativnye parallel’nye processory [Associative
parallel processors]. Energoizdat, 1981.

[29] A. Ershov, Algoritmy, matematicheskoe obespechenie i arhitektura
mnogoprocessornyh vychislitel’nyh sistem [Algorithms, mathe-
matical support, and architecture of multiprocessor computing
systems]. Nauka, 1982.

[30] L. Berstein, V. Lisyak, and V.Rabinovich, “Odnorodnaya program-
miruemaya struktura dlya resheniya kombinatorno-logicheskih
zadach na grafah i gipergrafah [Homogeneous programmable

58

https://doi.org/10.1109/85.194088


structure for solving combinatorial logic problems on graphs and
hypergraphs],” Metody rascheta i avtomatizaciya proektirovaniya
ustrojstv v mikroelektronnyh CVM [Calculation methods and
automation of device design in microelectronic digital computers],
pp. 39–52, 1975.

[31] V. Vasiliev and E. Raldugin, Elektronnye modeli zadach na
grafah [Electronic models of graph problems]. Naukova dumka
[Scientific thought], 1987.

[32] P. Sapaty, “Aktivnoe informacionnoe pole kak model’ strukturnogo
resheniya zadach na grafah i setyah [Active information field as
a model of structural problem solving on graphs and networks],”
Iss. of the USSR Academy of Sciences. Tech. Cybernet., no. 5, pp.
184–208, 1984.

[33] A. Popov, “Primenenie geterogennoj vychislitel’noj sistemy s
naborom komand diskretnoj matematiki dlya resheniya zadach
na grafah [Application of a heterogeneous computing system
with a set of discrete mathematics commands for solving
graph problems],” Informacionnye tekhnologii [Information
technologies], vol. 25, no. 11, pp. 682–690, 2019, (In Russ.).

[34] A. Popov, “Principy organizacii geterogennoj vychislitel’noj
sistemy s naborom komand diskretnoj matematiki [Principles
of organization of a heterogeneous computing system with a set
of discrete mathematics commands],” Informacionnye tekhnologii
[Information technologies], vol. 26, no. 2, pp. 67–79, 2020, (In
Russ.).

[35] J. Zhang, S. Khoram, and J. J. Li, “Boosting the Performance of
FPGA-based Graph Processor using Hybrid Memory Cube: A Case
for Breadth First Search,” Proceedings of the 2017 ACM/SIGDA
International Symposium on Field-Programmable Gate Arrays,
2017.

[36] Y. Hu, Y. Du, E. Ustun, and Z. Zhang, “GraphLily: Acceler-
ating Graph Linear Algebra on HBM-Equipped FPGAs,” 2021
IEEE/ACM International Conference On Computer Aided Design
(ICCAD), pp. 1–9, 2021.

[37] W. S. Song, V. Gleyzer, A. Lomakin, and J. Kepner,
“Novel graph processor architecture, prototype system, and
results,” in 2016 IEEE High Performance Extreme Computing
Conference (HPEC). IEEE, Sep. 2016. [Online]. Available:
https://doi.org/10.1109/hpec.2016.7761635

[38] I. V. Afanasyev, V. V. Voevodin, K. Komatsu, and H. Kobayashi,
“VGL: a high-performance graph processing framework for the
NEC SX-aurora TSUBASA vector architecture,” The Journal
of Supercomputing, vol. 77, no. 8, pp. 8694–8715, Jan. 2021.
[Online]. Available: https://doi.org/10.1007/s11227-020-03564-9

[39] M. Weinzweig, Obuchayushchayasya sistema iskusstvennogo
intellekta s associativnoj pamyat’yu-processorom [Learning Ar-
tificial Intelligence system with associative memory processor].
USSR Academy of Sciences, Scientific Council. according to the
complex. probl. “Cybernetics”, 1980.

[40] M. Weinzweig and M. Polyakova, “Mekhanizm myshleniya i
modelirovanie ego raboty v real’nom vremeni [Mechanism of
thinking and modeling its work in real time],” Intellektual’nye
processy i ih modelirovanie [Intelligent processes and their
modeling], pp. 208 – 229, 1987.

[41] S. Somsubhra, “Reconfigurable semantic processor,” Oct 2006.
[42] Z. Rabinovich, “Nekotoryj bionicheskij podhod k strukturnomu

modelirovaniyu celenapravlennogo myshleniya [Some bionic ap-
proach to structural modeling of purposeful thinking],” Kibernetika
[Cybernetics], no. 2, pp. 115–118, 1979.

[43] ——, “Razvitie struktur universal’nyh EVM v svyazi s problemami
avtomatizacii nauchnyh issledovanij [Development of universal
computer structures in connection with the problems of automation
of scientific research],” Avtomatika [Automation], no. 5, pp. 63–72,
1979.

[44] V. Gladun, Evristicheskij poisk v slozhnyh sredah [Heuristic search
in complex environments]. Naukova dumka [Scientific thought],
1977.

[45] ——, Planirovanie reshenij [Planning solutions]. Naukova dumka
[Scientific thought], 1987.

[46] N. Amosov, A. Kasatkin, L. Kasatkina, and S. Talaev, Avtomaty
i razumnoe povedenie [Automata and reasonable behavior].
Naukova dumka [Scientific thought], 1973.

[47] E. Zolotov and I. Kuznetsov, Rasshiryayushchiesya sistemy
aktivnogo dialoga [Expanding active dialogue systems]. Nauka,
1982.

[48] A. Galushkin, “Sovremennye napravleniya razvitiya
nejrokomp’yuternyh tekhnologij v Rossii [Modern directions of
development of neurocomputer technologies in Russia],” Otkrytye
sistemy [Open systems], no. 4, pp. 25–28, 1997, (In Russ.).

[49] R. Hecht-Nielsen, “Nejrokomp’yuting: istoriya, sostoyanie, per-
spektivy [Neurocomputing: history, state, prospects],” Otkrytye
sistemy [Open systems], no. 4, pp. 23–28, 1998.

[50] L. Komartsova and A. Maksimov, Nejrokomp’yutery. - 2-e izd.
[Neurocomputers. – 2nd ed.], ser. Informatika v tekhnicheskom
universitete [Computer Science at the Technical University].
Moscow: Bauman Moscow State Technical University, 2004.

[51] (2022, Dec) USB Accelerator | Coral. [Online]. Available:
https://coral.ai/products/accelerator/

[52] M. Moussa, A. Savich, and S. Areibi, “Architecture, system and
method for artificial neural network implementation,” Jun 2013.

[53] “Nejromorfnyj processor “Altaj” Neuromorphic processor “Altai”,”
mode of access: https://motivnt.ru/neurochip-altai/. — Date of
access: 29.03.2023.

[54] J. D. Allen, J. Philip, and L. Butler, “Parallel machine architecture
for production rule systems,” Jun 1989.

[55] “CUDA Toolkit,” mode of access: https://developer.nvidia.com/
cuda-toolkit. — Date of access: 29.03.2023.

[56] “OpenCL,” mode of access: https://www.khronos.org/opencl/. —
Date of access: 29.03.2023.

[57] H.-N. Tran and E. Cambria, “A survey of graph processing
on graphics processing units,” The Journal of Supercomputing,
vol. 74, no. 5, pp. 2086–2115, Jan. 2018. [Online]. Available:
https://doi.org/10.1007/s11227-017-2225-1

[58] X. Shi, Z. Zheng, Y. Zhou, H. Jin, L. He, B. Liu, and
Q.-S. Hua, “Graph processing on GPUs,” ACM Computing
Surveys, vol. 50, no. 6, pp. 1–35, Nov. 2018. [Online]. Available:
https://doi.org/10.1145/3128571

[59] Y. Lü, H. Guo, L. Huang, Q. Yu, L. Shen, N. Xiao, and
Z. Wang, “GraphPEG,” ACM Transactions on Architecture and
Code Optimization, vol. 18, no. 3, pp. 1–24, Sep. 2021. [Online].
Available: https://doi.org/10.1145/3450440

[60] V. Golenkov, “Strukturnaya organizaciya i pererabotka informacii
v elektronnyh matematicheskih mashinah, upravlyaemyh potokom
slozhnostrukturirovannyh dannyh [Structural organization and
processing of information in electronic mathematical machines
controlled by the flow of complex structured data],” PhD diss.:
05.13.01 ; 05.13.13, Minsk, 1996.

[61] ——, Parallel’nyj grafovyj komp’yuter (PGC), orientirovannyj
na reshenie zadach iskusstvennogo intellekta, i ego primenenie
(Preprint; No 2) [Parallel graph computer (PGC), focused
on solving artificial intelligence problems, and its application
(Preprint; No. 2)]. Institute of Technical Cybernetics, 1994.

[62] V. Golenkov [et al.], Terminal’nyj modul’ parallel’nogo grafovogo
komp’yutera (PGC): Interfejs s pol’zovatelem i processornymi
modulyami, struktura, logicheskaya organizaciya: materialy po
matematicheskomu obespecheniyu EVM [Terminal module of a
parallel graph computer (PGC): User interface and processor
modules, structure, logical organization: materials on computer
mathematical support]. Institute of Technical Cybernetics, 1994.

[63] V. Golenkov, “Grafodinamicheskie modeli i metody parallel’noj
asinhronnoj pererabotki informacii v intellektual’nyh sistemah
[Graphodynamic models and methods of parallel asynchronous
processing of information in intelligent systems],” Doct. diss.:
05.13.11 ; 05.13.17, Minsk, 1996, 396 p.

[64] P. Gaponov, “Modeli i metody parallel’noj asinhronnoj pererabotki
informacii v grafodinamicheskoj associativnoj pamyati [Models
and methods of parallel asynchronous processing of information in
graphodynamic associative memory],” PhD diss.: 05.13.11, Minsk,
2000, 114 p.

[65] V. Kuzmitsky, “Principy postroeniya grafodinamicheskogo
parallel’nogo komp’yutera, orientirovannogo na reshenie zadach
iskusstvennogo intellekta [Principles of building a graphodynamic
parallel computer focused on solving artificial intelligence
problems],” PhD diss.: 05.13.11, Minsk, 2000, 236 p.

59

https://doi.org/10.1109/hpec.2016.7761635
https://doi.org/10.1007/s11227-020-03564-9
https://coral.ai/products/accelerator/
https://motivnt.ru/neurochip-altai/
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cuda-toolkit
https://www.khronos.org/opencl/
https://doi.org/10.1007/s11227-017-2225-1
https://doi.org/10.1145/3128571
https://doi.org/10.1145/3450440


[66] R. Serdyukov, “Bazovye algoritmy i instrumental’nye sredstva
obrabotki informacii v grafodinamicheskih associativnyh mashinah
[Basic algorithms and tools for information processing in
graphodynamic associative machines],” PhD diss.: 05.13.11,
Minsk, 2004, 114 p.

[67] V. Golenkov, N. Gulyakina, and D. Shunkevich, Standart otkrytoj
tekhnologii ontologicheskogo proektirovaniya, proizvodstva i
ekspluatacii semanticheski sovmestimyh gibridnyh intellektual’nyh
komp’yuternyh sistem [Standard of the open technology for
ontological design, production, and operation of semantically
compatible hybrid intelligent computer systems], V. Golenkov, Ed.
Minsk: Bestprint, 2021.

[68] J. von Neumann, Teoriya samovosproizvodyashchihsya avtomatov
[Theory of self-reproducing automata]. M.: Mir, 1971, (In Russ.).

[69] D.A. Moon, “Symbolics architecture,” Computer, vol. 20, no. 1, pp.
43–52, 1987. [Online]. Available: doi:10.1109/MC.1987.1663356

[70] S. Smith, “The LMI Lambda Technical Summary. Technical report,
LMI Inc.” Los Angeles, CA, 1984.

[71] G. L. Steele and W. D. Hillis, “Connection Machine Lisp: fine-
grained parallel symbolic processing,” in Proceedings of the 1986
ACM conference on LISP and functional programming (LFP ’86).
New York: ACM, 1986, pp. 279–297.

[72] P. McJones. (2018, Dec.) Parallel Lisps: Connection Machine
Lisp (StarLisp). Computer History Museum. Mode of access:
https://www.softwarepreservation.org/projects/LISP/parallel#
Connection_Machine_\protect\discretionary{\protect\protect\
leavevmode@ifvmode\kern+.1667em\relax\OMS/cmsy/m/n/8\
char2}{}{}Lisp_(StarLisp). — Date of access: 29.12.2018.

[73] V. van der Leun, Introduction to JVM Languages. Packt
Publishing, Jun. 2017.

[74] V. Ivashenko, “String processing model for knowledge-driven
systems,” Doklady BGUIR, vol. 18, pp. 33–40, 10 2020.

[75] B. Rasheed and A. Popov, “Network Graph Datastore Using
DISC Processor,” in 2019 IEEE Conference of Russian Young
Researchers in Electrical and Electronic Engineering (EIConRus),
Jan. 2019, pp. 1582–1587.

[76] E. Dubrovin and A. Popov, “Graph representation methods for
the discrete mathematics instructions set computer,” in 2020
IEEE Conference of Russian Young Researchers in Electrical and
Electronic Engineering (EIConRus), Jan. 2020, pp. 1925–1930.

[77] C. Hewitt. Middle History of Logic Programming: Resolution,
Planner, Prolog and the Japanese Fifth Generation Project.
Mode of access: http://citeseerx.ist.psu.edu/viewdoc/download;
jsessionid=07A4074D9BBEC56C92085D21A10A6B4D?doi=10.
1.1.363.8517&rep=rep1&type=pdf. — Date of access: accessed
20.03.2020.

[78] V. Ivashenko, Modeli resheniya zadach v intellektual’nyh sistemah.
V 2 ch. CH. 1 : Formal’nye modeli obrabotki informacii i
parallel’nye modeli resheniya zadach : ucheb.-metod. posobie
[Problem-solving models in intelligent systems. In 2 p. P. 1 :
Formal models of information processing and parallel problem-
solving models: study guide]. Minsk: BSUIR, 2020, (In Russ.).

[79] “LegUp High-Level Synthesis,” mode of access: http://legup.eecg.
utoronto.ca/. — Date of access: 29.03.2023.

[80] “VHDPlus,” mode of access: https://vhdplus.com/. — Date of
access: 29.03.2023.

[81] “SystemC Community Portal,” mode of access: https://systemc.
org/. — Date of access: 29.03.2023.

[82] “MyHDL,” mode of access: https://www.myhdl.org/. — Date of
access: 29.03.2023.

[83] P. Sapaty, “Yazyk VOLNA-0 kak osnova navigacionnyh struktur
dlya baz znanij na osnove semanticheskih setej [language VOLNA-
0 as the basis of navigation structures for knowledge bases based
on semantic networks],” Iss. of the USSR Academy of Sciences.
Technical cybernetics, no. 5, pp. 198–210, 1986.

[84] D. I. Moldovan and Y.-W. Tung, “SNAP: A VLSI architecture
for artificial intelligence processing,” Journal of Parallel and
Distributed Computing, vol. 2, no. 2, pp. 109–131, 1985.
[Online]. Available: https://www.sciencedirect.com/science/article/
pii/0743731585900310

[85] A. Letichevsky, Yu. Kapitonova, V. Volkov, V. Vyshemirsky, and
A. Letichevsky (j.), “Insercionnoe programmirovanie [Insertion

programming],” Kibernetika i sistemnyj analiz [Cybernetics and
system analysis], no. 1, pp. 19–32, 2003.

[86] A. Letichevsky, “Insercionnoe modelirovanie [Insertion model-
ing],” Upravlyayushchie sistemy i mashiny [Control systems and
machines], no. 6, pp. 3–14, 2012.

[87] J. Backus, “Can programming be liberated from the von Neumann
style?” Communications of the ACM, vol. 21, no. 8, pp. 613–641,
Aug. 1978. [Online]. Available: https://doi.org/10.1145/359576.
359579

[88] V. Kotov and A. Nariniani, “Asinhronnye vychislitel’nye processy
nad obshchej pamyat’yu [Asynchronous computing processes over
shared memory],” Kibernetika [Cybernetics], no. 3, pp. 64–71,
1966.

Ассоциативные семантические
компьютеры для интеллектуальных

компьютерных систем нового поколения
Голенков В. В., Шункевич Д. В.,
Гулякина Н. А., Ивашенко В. П.,

Захарьев В. А.
В работе рассмотрены недостатки доминирующей

в настоящее время фон-Неймановской архитектуры
компьютерных систем в качестве основы для постро-
ения интеллектуальных компьютерных систем нового
поколения, проведен анализ современных подходов
к разработке аппаратных архитектур, устраняющих
некоторые из указанных недостатков, обоснована
необходимость разработки принципиально новых аппа-
ратных архитектур, представляющих собой аппаратный
вариант реализации платформы интерпретации систем,
построенных на базе Технологии OSTIS, — ассоциа-
тивных семантических компьютеров.

Предложены общие принципы, лежащие в основе ас-
социативных семантических компьютеров, рассмот-
рены три возможных варианта архитектуры таких ком-
пьютеров, представлены их достоинства и недостатки.

Received 13.03.2023

60

doi:10.1109/MC.1987.1663356
https://www.softwarepreservation.org/projects/LISP/parallel#Connection_Machine_\protect \discretionary {\protect \protect \leavevmode@ifvmode \kern +.1667em\relax \OMS/cmsy/m/n/8 \char 2}{}{}Lisp_(StarLisp)
https://www.softwarepreservation.org/projects/LISP/parallel#Connection_Machine_\protect \discretionary {\protect \protect \leavevmode@ifvmode \kern +.1667em\relax \OMS/cmsy/m/n/8 \char 2}{}{}Lisp_(StarLisp)
https://www.softwarepreservation.org/projects/LISP/parallel#Connection_Machine_\protect \discretionary {\protect \protect \leavevmode@ifvmode \kern +.1667em\relax \OMS/cmsy/m/n/8 \char 2}{}{}Lisp_(StarLisp)
https://www.softwarepreservation.org/projects/LISP/parallel#Connection_Machine_\protect \discretionary {\protect \protect \leavevmode@ifvmode \kern +.1667em\relax \OMS/cmsy/m/n/8 \char 2}{}{}Lisp_(StarLisp)
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=07A4074D9BBEC56C92085D21A10A6B4D?doi=10.1.1.363.8517&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=07A4074D9BBEC56C92085D21A10A6B4D?doi=10.1.1.363.8517&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=07A4074D9BBEC56C92085D21A10A6B4D?doi=10.1.1.363.8517&rep=rep1&type=pdf
http://legup.eecg.utoronto.ca/
http://legup.eecg.utoronto.ca/
https://vhdplus.com/
https://systemc.org/
https://systemc.org/
https://www.myhdl.org/
https://www.sciencedirect.com/science/article/pii/0743731585900310
https://www.sciencedirect.com/science/article/pii/0743731585900310
https://doi.org/10.1145/359576.359579
https://doi.org/10.1145/359576.359579

