
Design Principles, Structure, and Development
Prospects of the Software Platform of

ostis-systems
Nikita Zotov

Belarusian State University of
Informatics and Radioelectronics

Minsk, Belarus
Email: nikita.zotov.belarus@gmail.com

Abstract—In the article, the principles of design and
development of the basic Software implementation of the ostis-
platform are described. The advantages of the ontological
approach to documenting software systems of this type
are shown. The structure, problems, and prospects of
developing the Software implementation of the ostis-platform
are described.

Keywords—ontological design, automation tools for design
and development of computer systems, knowledge base
management system, universal interpreter, graph storage,
ostis-platform

I. INTRODUCTION

Modern software computer systems should operate not
just with data but with knowledge. To understand the
meaning of knowledge, it is necessary to represent this
knowledge in an understandableunderstandableunderstandableunderstandableunderstandableunderstandableunderstandableunderstandableunderstandableunderstandableunderstandableunderstandableunderstandableunderstandableunderstandableunderstandableunderstandable form for anyanyanyanyanyanyanyanyanyanyanyanyanyanyanyanyany cybernetic
system: as for any human, so for any artificial system [1].
At the same time, the form of representing this knowledge
must be unifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunified and independentindependentindependentindependentindependentindependentindependentindependentindependentindependentindependentindependentindependentindependentindependentindependentindependent of the platform on which
this knowledge can be interpreted. Nevertheless, computer
systems remain dependent on highly qualified specialists
and experts in subject domains in which the automation
of the design of these systems is carried out; therefore,
the implementation of these systems requires significant
resources [2]. One of the reasons for this is the need for
a computer system to work on different platforms, each
of which, in general, may have its own characteristics
and limitations, which must be taken into account at the
implementation stage.

The solution of these problems is design and develop-
ment of fundamentally new platforms, which should
provide:

• unambiguity of interpretationunambiguity of interpretationunambiguity of interpretationunambiguity of interpretationunambiguity of interpretationunambiguity of interpretationunambiguity of interpretationunambiguity of interpretationunambiguity of interpretationunambiguity of interpretationunambiguity of interpretationunambiguity of interpretationunambiguity of interpretationunambiguity of interpretationunambiguity of interpretationunambiguity of interpretationunambiguity of interpretation and representation of
software system models provided by the unified
knowledge representation language and platform
design ontology used;

• semantic compatibilitysemantic compatibilitysemantic compatibilitysemantic compatibilitysemantic compatibilitysemantic compatibilitysemantic compatibilitysemantic compatibilitysemantic compatibilitysemantic compatibilitysemantic compatibilitysemantic compatibilitysemantic compatibilitysemantic compatibilitysemantic compatibilitysemantic compatibilitysemantic compatibility of software system models
and their components [3], including interoperability
between them [4];

• platform independenceplatform independenceplatform independenceplatform independenceplatform independenceplatform independenceplatform independenceplatform independenceplatform independenceplatform independenceplatform independenceplatform independenceplatform independenceplatform independenceplatform independenceplatform independenceplatform independence of software system models
implemented and interpreted on it;

• simplicitysimplicitysimplicitysimplicitysimplicitysimplicitysimplicitysimplicitysimplicitysimplicitysimplicitysimplicitysimplicitysimplicitysimplicitysimplicitysimplicity and extensibilityextensibilityextensibilityextensibilityextensibilityextensibilityextensibilityextensibilityextensibilityextensibilityextensibilityextensibilityextensibilityextensibilityextensibilityextensibilityextensibility of their functionality;
• functional completenessfunctional completenessfunctional completenessfunctional completenessfunctional completenessfunctional completenessfunctional completenessfunctional completenessfunctional completenessfunctional completenessfunctional completenessfunctional completenessfunctional completenessfunctional completenessfunctional completenessfunctional completenessfunctional completeness for creating software sys-

tem models due to the presence of a formal method-
ology for designing its implementation;

• segregation of duties between platform components.

II. PROPOSED APPROACH TO THE DESIGN OF SYSTEMS
FOR AUTOMATING THE DESIGN OF SOFTWARE

SYSTEMS

The shortcomings of modern computer systems for
design automation of other software systems, ways to
solve them, as well as the approach to the solution
described below were described earlier in the works [5]
and [6].

Despite the vast variety of classical technologies used
by mankind, there is no general solution that allows
solving the problem in a complex. At the moment, the
described problems can only be solved with the help of a
general and universal solution — OSTIS Technology [7].
The OSTIS Technology is based on a unified variant of
information encoding based on semantic networks with
a basic set-theoretic interpretation, called SC-code [8].
The language of semantic representation of knowledge
is based on two formalisms of discrete mathematics: Set
Theory — defines the semantics of the language — and
Graph Theory — defines the syntax of the language. Any
types and models of knowledge can be described using
SC-code [7].

One of the keykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykey principles of the OSTIS Technology [9]
is providing platform independence of ostis-systems [10],
i.e. strict separation of the logical-semantic model of a
cybernetic system (sc-model of a cybernetic system) and
the platform for interpreting sc-models of a cybernetic
system (ostis-platform). The advantages of such a strict
separation are quite obvious:

• transfer of the ostis-system from one ostis-platform
to another is carried out with minimumminimumminimumminimumminimumminimumminimumminimumminimumminimumminimumminimumminimumminimumminimumminimumminimum overhead

67



costs (in the ideal case — comes down to simply
loading the sc-model of a cybernetic system onto the
ostis-platform);

• components of ostis-systems become universaluniversaluniversaluniversaluniversaluniversaluniversaluniversaluniversaluniversaluniversaluniversaluniversaluniversaluniversaluniversaluniversal, that
is, can be used in any ostis-systems where their use
is appropriate;

• the development of the ostis-platform and the devel-
opment of sc-models of systems can be carried out
in parallelin parallelin parallelin parallelin parallelin parallelin parallelin parallelin parallelin parallelin parallelin parallelin parallelin parallelin parallelin parallelin parallel and independentlyindependentlyindependentlyindependentlyindependentlyindependentlyindependentlyindependentlyindependentlyindependentlyindependentlyindependentlyindependentlyindependentlyindependentlyindependentlyindependently of each other, in the
general case by separate independent development
teams according to their own rules and methods [11].

logical-semantic model of a cybernetic system
:= [formal model (formal description) for the func-

tioning of a cybernetic system, consisting of
(1) a formal model of information stored in the
memory of a cybernetic system and (2) a formal
model of a collective of agents that process this
information.]

⊃ sc-model of a cybernetic system
:= [logical-semantic model of a cybernetic

system represented in the SC-code]
:= [logical-semantic model of an ostis-system,

which, in particular, can be a functionally
equivalent model of any cybernetic sys-
tem that is not an ostis-system]

ostis-system
⊂ subject
⇒ generalized decomposition*:

{{{• sc-model of a cybernetic system
• ostis-platform

}}}
sc-model of a cybernetic system
⇒ generalized decomposition*:

{{{• sc-memory
• sc-model of the knowledge base
• sc-model of the problem solver
• sc-model of a cybernetic system interface

}}}
ostis-platform
:= [platform for interpreting sc-models of computer

systems]
:= [interpreter for sc-models of cybernetic systems]
:= [interpreter of unified logical-semantic models of

computer systems]
:= [family of platforms for interpreting sc-models of

computer systems]
:= [platform for implementing sc-models of computer

systems]
:= ["empty" ostis-system]
:= [sc-machine implementation]
⊂ platform-dependent reusable ostis-systems

component [11]
sc-memory
:= [abstract sc-memory]

:= [sc-storage]
:= [semantic memory storing SC-code constructions]
:= [storage of SC-code constructions]

In general, sc-memory implements the following func-
tions:

• storage of SC-code constructions;
• storage of information constructions (files) external

to SC-code. In general, file storage can be imple-
mented differently from storage of sc-constructions;

• access (reading, creating, deleting) to SC-code con-
structions, implemented through the corresponding
software (hardware) interface. Such an interface is
essentially a microprogramming language that makes
it possible to implement on its basis more complex
procedures for processing stored constructions, the
set of which essentially determines the list of
commands of such a microprogramming language.
The sc-memory itself is passive in this regard and
simply executes commands initiated from outside by
some subjects.

Despite all the advantages of graph databases in
comparison with relational databases [12], [13], new gen-
eration computer software systems, due to their properties,
[14] should operate not simply with data, but knowledge.
To understand the meaning of knowledge, it is necessary
to represent this knowledge in an understandable form for
any kind of cybernetic system [14]. Speaking about the
unification of the representation of all types of knowledge,
it is considered important to use graph databases not just
as a means for storing structured data, but for storing
semantically coherent and related knowledge among
themselves. Therefore, sc-memory is based on a graph
representation of data and knowledge.

III. PRINCIPLES UNDERLYING THE SOFTWARE
PLATFORM OF OSTIS-SYSTEMS

The specification of such a complex program object
as the ostis-platform must be represented in some formalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformalformal
knowledge representation language, in this case, in the
SC-code, the texts of which it stores and processes. The
language that should describe the Software implementa-
tion of the ostis-platform should be a sublanguage* of
the SC-code, i.e. it should inherit all the properties of
the Syntax and Denotational semantics of the SC-code
[15]. This representation of software computer systems
specifications gives certainlycertainlycertainlycertainlycertainlycertainlycertainlycertainlycertainlycertainlycertainlycertainlycertainlycertainlycertainlycertainlycertainly strong advantages over other
possible representations of specifications [16]:

• The language whose texts the system stores and
processes and the language that specifies how the
system represents the texts of the first language in its
own memory are subsets of the same languagesame languagesame languagesame languagesame languagesame languagesame languagesame languagesame languagesame languagesame languagesame languagesame languagesame languagesame languagesame languagesame language. This
simplifies not only the understanding of the developer
who develops a complex software computer system,
due to the fact that the form of representation of
the language processed by this system and the

68



language of its specification are unifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunified, but also
allows discovering new functionalities for this system
in cognitioncognitioncognitioncognitioncognitioncognitioncognitioncognitioncognitioncognitioncognitioncognitioncognitioncognitioncognitioncognitioncognition of itself. Thus, this approach allows
full implementation of intelligent computer system
properties, for example, reflexivity.

• It is impossible to design and implement intelligent
computer systems on a software computer system
that is not itself one. Representing the system speci-
fication in this form allows significantlysignificantlysignificantlysignificantlysignificantlysignificantlysignificantlysignificantlysignificantlysignificantlysignificantlysignificantlysignificantlysignificantlysignificantlysignificantlysignificantly increasing
the level of its intelligence [14].

• There is no need to create additional tools for
verification and analysis of the operation of the entire
system, since the representation form of the system
description language is unifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunifiedunified with the language
whose texts it stores and processes. This allows not
only reducing the number of tools used in the design
and implementation of the ostis-platform but also
allows unifyingunifyingunifyingunifyingunifyingunifyingunifyingunifyingunifyingunifyingunifyingunifyingunifyingunifyingunifyingunifyingunifying the information stored in the ostis-
platform and describing the ostis-platform with the
purpose of using this information in the evolution
of ostis-platform components. At the same time,
the ostis-platform specification remains platform-
independent, so when changing one implementation
of the ostis-platform to another, an approach to
describing the ostis-platform remains the samesamesamesamesamesamesamesamesamesamesamesamesamesamesamesamesame.

Software implementation of the ostis-platform
:= [Implementation of the sc-machine]
⇒ frequently used sc-identifier*:

[Software platform of ostis-systems]
:= [Basic software platform for mass creation of next-

generation intelligent computer systems]
:= [Our proposed software implementation of an

associative semantic computer]
:= [sc-machine]
∈ specialized ostis-platform
∈ web-based implementation of the ostis-platform

:= [an option of implementing a platform
for interpreting sc-models of computer
systems, involving the interaction of users
with the system via the Internet]

∈ multi-user ostis-platform implementation
∈ reusable ostis-systems component stored as

source files
∈ non-atomic reusable ostis-systems component
∈ dependent reusable ostis-systems component
⇒ component address*:

[https://github.com/ostis-ai/sc-machine]
⇒ software system decomposition*:

{{{• Implementation of memory in the
ostis-platform

• Implementation of the subsystem of
interaction with the external environment
using languages of network interaction

• Implementation of the interpreter for

sc-models of user interfaces
• Implementation of the basic set of

platform-specific sc-agents and their
common components

• Implementation of the manager of
ostis-systems reusable components

}}}
⇒ component dependencies*:

{{{• Implementation of memory of the
ostis-platform

• Implementation of the subsystem of
interaction with the external environment
using languages of network interaction

• Implementation of the interpreter for
sc-models of user interfaces

}}}

Software implementation of the ostis-platform
⇒ underlying principles*:

• The current Software implementation of the
ostis-platform is web-orientedweb-orientedweb-orientedweb-orientedweb-orientedweb-orientedweb-orientedweb-orientedweb-orientedweb-orientedweb-orientedweb-orientedweb-orientedweb-orientedweb-orientedweb-orientedweb-oriented, so from this
point of view, each ostis-system is a web site
accessible online through the usual browser.
This implementation option has an obvious
advantage — access to the system is possible
from anywhere in the world where the Internet
is available, and no specialized software is
required to work with the system. On the
other hand, this implementation option allows
multiple users to work with the system in
parallel.

• The implementation is cross-platformcross-platformcross-platformcross-platformcross-platformcross-platformcross-platformcross-platformcross-platformcross-platformcross-platformcross-platformcross-platformcross-platformcross-platformcross-platformcross-platform and can
be built from source texts on various operating
systems. At the same time, the interaction
between the client and server parts is organized
in such a way that a web-interface can be easily
replaced with a desktop or mobile interface,
both universal and specialized ones.

• The current Software implementation of the
ostis-platform is customizedcustomizedcustomizedcustomizedcustomizedcustomizedcustomizedcustomizedcustomizedcustomizedcustomizedcustomizedcustomizedcustomizedcustomizedcustomizedcustomized, i.e. does not in-
clude the Implementation of the SCP Language
interpreter. At the current stage of develop-
ment of the Software implementation of the
ostis-platform, all functioning ostis-systems are
platform-dependent. This problem is primarily
related to the shortcomings of the chosen and
implemented sc-memory access control model,
which does not allow fully creating distributed
collectives of sc-agents working on sc-memory.

• The Core of the platformCore of the platformCore of the platformCore of the platformCore of the platformCore of the platformCore of the platformCore of the platformCore of the platformCore of the platformCore of the platformCore of the platformCore of the platformCore of the platformCore of the platformCore of the platformCore of the platform is the Implementation
of memory of the ostis-platform, which can
simultaneously interact with both Implementa-
tion of the interpreter for sc-models of user
interfaces and with any third-party applications
according to the corresponding languages of

69



network interaction (network protocols). From
the point of view of the overall architecture,
Implementation of the interpreter for sc-models
of user interfaces acts as one of many possible
external components that interact with the
Implementation of memory of the ostis-platform
over the network. From the point of view of
the overall architecture, Implementation of the
interpreter for sc-models of user interfaces acts
as one of many possible external components
that interact with the Implementation of memory
of the ostis-platform over the network. The
current Implementation of the interpreter for sc-
models of user interfaces of ostis-systems in the
Software implementation of the ostis-platform
is platform-dependent, since the interpreter of
the basic SCP Language [17] is not fully
implemented.

• The current Implementation of memory in the
ostis-platform allows storing and representing
sc-constructions that describe any sc-model of
the ostis-system, external information construc-
tions, not belonging to the SC-code, as well as
providing different levels of access for process-
ing these constructions. In the context of this
Software implementation of the ostis-platform,
Implementation of memory in the ostis-platform
consists of such components as: Implementation
of ostis-platform sc-memory, inside which sc-
constructions for sc-models of ostis-systems are
represented, Implementation of ostis-platform
file memory, inside which external information
constructions are represented that do not belong
to the SC-code, i.e. the contents of ostis-system
internal files, but additionally describe, explain,
and detail sc-constructions for sc-models of
ostis-systems.

• Current Software implementation of the ostis-
platform includes Implementation of the man-
ager of reusable ostis-systems components. This
is connected with the fact that the current
Implementation of the manager of reusable
ostis-systems component uses Implementation
of memory of the ostis-platform to store and pro-
cess the specification of installed components,
regardless of their implementation language.

Principles underlying the Software implementation of
the ostis-platform are only basic, all components included
in the Software implementation of the ostis-platform have
their own implementation features, as well as analogues
that must be taken into account when implementing the
entire ostis-platform.

IV. PRINCIPLES OF DOCUMENTING THE SOFTWARE
PLATFORM OF OSTIS-SYSTEMS

Permanent reengineering of the components of the
current Software implementation of the ostis-platform is
provided by an open team of developers, while each
component being developed is documented according to
generally accepted principles.

Software implementation of the ostis-platform
⇒ documentation principles*:

• Regardless of the implementation language
of each Software implementation of the ostis-
platform component, the specification of each
component includes a specification directly
described in the source files of the component
itself, describing the programming interface
of this component, as well as a specification
as part of the ostis-platform knowledge base,
describing in detail the implementation of this
component, including the algorithms used. At
the same time, duplication in the specification
for the Software implementation of the ostis-
platform components is strictly prohibited. So,
for example, the specification, which is directly
located in the source file with the implementa-
tion of the components themselves, describes
the features of using the components from the
point of view of an external or internal (that
is, being part of the team) developer, and the
specification, which is part of the sc-text for the
knowledge base of the Software implementation
of the ostis-platform, additionally includes fea-
tures, proposed approaches to implementation,
as well as the advantages and disadvantages of
the components included in the composition.

• Each component of the Software implementa-
tion of the ostis-platform is described by means
of the OSTIS Technology, that is, in the SC-
code, the texts of which it processes and stores.
Thus, it enables the platform to analyze its
state and help maintain its life cycle without
the participation of its developers. Software
implementation of the ostis-platform acts as
a full-fledged subject that is directly involved
in its own development.

• Specification of the Software implementation
of the ostis-platform is an sc-language, i.e. a
sublanguage of the SC-code, for which the
Syntax and Denotational semantics of the SC-
code are specified. This sc-language can be
represented as a family of more specific sc-
languages that allow describing:
• how sc-constructions are represented

inside the ostis-platform sc-memory;

70



• how information constructions that do
not belong to the SC-code are repre-
sented within the file memory of the
ostis-platform;

• how different ostis-platform subsystems
interact with each other;

• which methods and their corresponding
agents interact with the ostis-platform
sc-memory;

• how various interpreters for sc-models
of ostis-systems (knowledge base, solver,
interface) are represented and work;

• and so on.
This approach makes it possible to integrate
descriptions of various components [18] that are
part of the Software implementation of the ostis-
platform without any particular obstacles, since
the entire Specification of the Software imple-
mentation of the ostis-platform is its knowledge
base with a clearly defined hierarchy of subject
domains and ontologies (that is, sc-languages
that describe its implementation).

• Each developer of the Software implementation
of the ostis-platform takes care of the permanent
support of not only the state of its components
but also the specification of these components.
A quality of Software implementation of the
ostis-platform is guaranteed by its team of
developers who are able not only to understand
the implementation details of the ostis-platform
but also to contribute to the creation of mutually
beneficial cooperation to achieve the set goals.

These principles can be used to describe any other
software computer systems, including those software
computer systems that are not implemented on this ostis-
platform.

V. STRUCTURE OF THE SOFTWARE PLATFORM OF
OSTIS-SYSTEMS

Implementation of memory in the ostis-platform
:= [Implementation of ostis-platform sc-memory and

file memory]
:= [Our proposed software implementation of ostis-

platform sc-memory and file memory]
∈ reusable ostis-systems component stored as

source files [11]
∈ non-atomic reusable ostis-systems component
∈ dependent reusable ostis-systems component
⇒ component address*:

[https://github.com/ostis-ai/sc-
machine/tree/main/sc-memory]

⇒ software system decomposition*:
{{{• Implementation of ostis-platform

sc-memory

• Implementation of ostis-platform file
memory

}}}
⇒ component dependencies*:

{{{• GLib library of methods and data
structures

• C++ Standard Library of methods and
data structures

• Implementation of ostis-platform
sc-memory

• Implementation of ostis-platform file
memory

}}}

Implementation of ostis-platform sc-memory
:= [Software implementation of graphodynamic as-

sociative memory in the Software ostis-systems
platform]

:= [Our proposed implementation of graphodynamic
associative memory for ostis-systems]

∈ sc-memory implementation
∈ reusable ostis-systems component stored as

source files
∈ atomic reusable ostis-systems component
∈ dependent reusable ostis-systems component
⇐ software model*:

sc-memory
⇐ family of subsets*:

sc-memory segment
:= [page of sc-memory]
⇐ family of subsets*:

sc-memory element
⇒ component dependencies*:

{{{• GLib library of methods and data
structures

• C++ Standard Library of methods and
data structures

}}}
⇒ programming language used*:

• C
• C++

⇒ internal language*:
• SCin-code

In general, sc-memory can be implemented in different
ways. So, for example, another version of ostis-platform
sc-memory can be implemented using the software im-
plementation of the Neo4j Platform [19]. The difference
between this possible implementation of sc-memory and
the current one is that the storage of graph constructions
and the management of the flow of actions on them should
be carried out to a greater extent by means provided by
the Neo4j Platform; at the same time, the representation
of graph constructions must be implemented in its own
way, since it depends on the Syntax of the SC-code.

71



Such an sc-memory model can be easily described in
the sc-language, that is, in the sublanguage of the SC-
code. Such a language allows describing how texts of a
language are represented inside the memory of the ostis-
platform in the same language. At the same time, not
only the unification of representing information processed
by the ostis-platform and information describing the
ostis-platform itself is observed, but also opportunities
are given for expanding and using the language in
the process of evolution of the ostis-platform and its
components, including those in the process of evolution
of Implementation of ostis-platform sc-memory.

SCin-code
:= [Semantic Code interior]
:= [Language for describing the representation of the

SC-code inside ostis-platform sc-memory]
:= [Metalanguage for describing the representation

of sc-constructions in ostis-platform sc-memory]
⇒ frequently used non-primary external identifier of

the sc-element*:
[scin-text]
∈ common noun

∈ abstract language
∈ metalanguage
∈ sc-language
⊂ SC-code
⊃ sc-memory

should be distinguished*
∋ {{{• SC-code

:= [Universal language of internal se-
mantic representation of knowl-
edge in memory of ostis-systems]

• SCin-code
:= [Metalanguage for describing the

representation of the SC-code in
ostis-platform sc-memory]

⊂ SC-code
}}}

Software interface of Implementation of ostis-platform
sc-memory
⇐ software interface*:

Implementation of ostis-platform sc-memory
∈ software interface
∈ reusable ostis-systems component stored as

source files
∈ atomic reusable ostis-systems component
∈ dependent reusable ostis-systems component
⇒ component dependencies*:

{{{• GLib library of methods and data
structures

• C++ Standard Library of methods and
data structures

}}}

⇒ method representation language used*:
• C
• C++

⊃ Software interface for information-forming
methods of Implementation of ostis-platform
sc-memory
:= [information-forming methods of Imple-

mentation of ostis-platform sc-memory]
:= [subsystem that is part of the implementa-

tion of ostis-platform sc-memory, which
allows creating, modifying, and deleting
constructions of sc-memory]

⇐ software interface*:
Implementation of the
information-generating subsystem of
Implementation of ostis-platform
sc-memory
⊂ Implementation of ostis-platform

sc-memory
⊃ Software interface for information retrieval

methods of Implementation of ostis-platform
sc-memory
:= [information retrieval methods of Imple-

mentation of ostis-platform sc-memory]
:= [subsystem that is part of Implementation

of ostis-platform sc-memory that allows
finding constructions in sc-memory]

⇐ software interface*:
Implementation of the information
retrieval subsystem of Implementation of
ostis-platform sc-memory
⊂ Implementation of ostis-platform

sc-memory

Implementation of ostis-platform file memory
∈ file memory implementation based on the prefix

tree
⇐ software model*:

ostis-platform file memory
∈ reusable ostis-systems component stored as

source files
∈ atomic reusable ostis-systems component
∈ dependent reusable ostis-systems component
⇒ component dependencies*:

{{{• GLib library of methods and data
structures

}}}
⇒ method representation language*:

• C
⇒ internal language*:

• SCfin code

SCfin-code
:= [Semantic Code file interior]

72



:= [Language for describing the representation of
information constructions that do not belong
to the SC-code inside the ostis-platform file
memory]

:= [Metalanguage for describing the representation
of information constructions that do not belong
to the SC-code inside the ostis-platform file
memory]

⇒ frequently used sc-identifier*:
[sc.fin-text]
∈ common noun

∈ abstract language
∈ metalanguage
∈ sc-language
⊂ SC-code
⊃ ostis-platform file memory

should be distinguished*
∋ {{{• SC-code

:= [Universal language of internal se-
mantic representation of knowl-
edge in memory of ostis-systems]

• SCfin-code
:= [Metalanguage for describing the

representation of external infor-
mation constructions that do not
belong to the SC-code in ostis-
platform file memory]

⊂ SC-code
}}}

should be distinguished*
∋ {{{• SCin-code

:= [Metalanguage for describing the
representation of the SC-code in
ostis-platform sc-memory]

⊂ SC-code
• SCfin-code

:= [Metalanguage for describing the
representation of external infor-
mation constructions that do not
belong to the SC-code in ostis-
platform file memory]

⊂ SC-code
}}}

Implementation of the subsystem of interaction with
the external environment using languages of network
interaction
⇒ software system decomposition*:

{{{• Implementation of the subsystem of
interaction with the external environment
using languages of network interaction
based on the JSON language

}}}

Implementation of the network interaction subsystem
with sc-memory based on JSON in the ostis-platform
:= [Subsystem for interacting with sc-memory based

on the JSON format]
:= [Network software interface of Implementation of

ostis-platform sc-memory]
:= [Our proposed option of implementing the mecha-

nism for accessing the ostis-platform sc-memory
in a distributed collective of ostis-systems]

∈ reusable ostis-systems component stored as
source files

∈ non-atomic reusable ostis-systems component
∈ dependent reusable ostis-systems component
∈ client-server system
⇒ method representation language used*:

• C
• C++
• Python
• TypeScript
• C#
• Java

⇒ language used*:
• SC-JSON-code

⇒ software system decomposition*:
{{{• Implementation of the Server System

based on Websocket and JSON, providing
network access to memory of the
ostis-platform

{{{}}}
= {{{• Implementation of the client

system in the Python programming
language

• Implementation of the client
system in the TypeScript
programming language

• Implementation of the client
system in the C programming
language

• Implementation of the client
system in the Java programming
language

}}}
}}}

SC-JSON-code
:= [Semantic JSON-code]
:= [Semantic JavaScript Object Notation code]
:= [Metalanguage for describing the representation

of messages between subsystems of the ostis-
platform]

⇒ frequently used sc-id*:
[sc-json-text]

:= [The language we propose for interaction in a
distributed collective of ostis-systems]
∈ common noun

73



∈ abstract language
⊂ SC-code
⊂ JSON

Implementation of the Server System based on
Websocket and JSON, providing network access to
memory of the ostis-platform
:= [Implementation of a Websocket-based system that

provides parallel-asynchronous multi-client ac-
cess to sc-memory of the sc-model interpretation
platform using the SC-JSON code]

:= [sc-json-server]
⇒ frequently used sc-identifier*:

[sc-server]
:= [sc-server]
∈ reusable ostis-systems component stored as

source files
∈ atomic reusable ostis-systems component
∈ dependent reusable ostis-systems component
⇒ method representation language used*:

• C
• C++

⇒ language used*:
• SC-JSON-code

⇒ component address*:
[https://github.com/ostis-ai/sc-machine/sc-
tools/sc-server]

⇒ component dependencies*:
{{{• Library of software components for

processing json texts
• Library of cross-platform software

components for implementing server
applications based on Websocket

• Software component for setting up
software components of ostis-systems

• Implementation of sc-memory
}}}

Implementation of the interpreter for sc-models of user
interfaces
:= [Our proposed interpreter for interpreting sc-

models of ostis-systems user interfaces]
∈ reusable ostis-systems component stored as

source files
∈ non-atomic reusable ostis-systems component
∈ dependent reusable ostis-systems component
⇒ method representation language used*:

• JavaScript
• TypeScript
• Python
• HTML
• CSS

⇒ component address*:
[https://github.com/ostis-ai/sc-web]

⇒ component dependencies*:
{{{• Library of standard interface components

in the JavaScript programming language
• Library for implementing server

applications in the Python Tornado
programming language

• Implementation of the client system in the
TypeScript programming language

• Implementation of the client system in the
Python programming language

}}}

VI. PROSPECTS FOR DEVELOPING THE SOFTWARE
PLATFORM OF OSTIS-SYSTEMS

Software implementation of the ostis-platform
⇒ prospects for development*:

• Despite the fact that the Implementation of ostis-
platform sc-memory is functionally complete
for the development of semantically compatible
interoperable ostis-systems and is multi-user,
i.e. it can execute actions of different users in
parallel, significant restrictions are imposed on
the actions of these users. First of all, these
restrictions are connected not so much with the
memory model underlying the implementation
but with the model of asynchronous access to
it. The implemented model of asynchronous
memory access requires blocking access to
a group of related sc-elements and not to a
particular one of these sc-elements. For example,
to create an outgoing sc-arc from a given sc-
element, it is necessary to lock not only the
cell in memory in which this sc-element is
stored but also the initial incoming and out-
going sc-connectors from the list of incoming
and outgoing sc-connectors of this sc-element,
respectively. In the process of parallel operation
of sc-memory, blunders can often occur: dead-
locking of processes performing actions on the
same sc-elements, resource races on the same
sc-elements, etc. To eliminate these problems,
a transition to a new model of asynchronous
access to sc-memory is required or a transition
to a new implementation of sc-memory without
changing the existing programming interface
for the implementation of sc-memory.

• The current Software implementation of the
ostis-platform is customized and does not in-
clude the Implementation of the SCP Language
interpreter (that is, when the ostis-platform
is running, the SCP Language interpreter is
not used), which hinders the development of
platform-independent ostis-systems. This is in
no way related to the complexity of developing

74



this kind of interpreter. On the contrary, the
problem lies in the model of asynchronous
access to sc-memory, which prevents the col-
lection of sc-agents that are part of the Imple-
mentation of the SCP Language interpreter to
work smoothly. To implement a full-fledged
collective of ostis-systems interacting with each
other, it is necessary to transfer the Software
implementation of the ostis-platform from the
specialized ostis-platforms class to the basic
ostis-platforms class. Thus, it is necessary to
switch to a new version of the ostis-platform
(not a modification (!)), which will contain the
current Implementation of the SCP Language
interpreter.

• The current Implementation of ostis-platform sc-
memory is efficient for storing large amounts of
knowledge in ostis-systems knowledge bases.
However, in information retrieval problems,
rather complex tools and subsystems are re-
quired to ensure the most effective solution of
these problems. So, for example, to find all pairs
of a given relation whose first component is a
given sc-element, it is necessary to check the
entire list of outgoing sc-connectors of a given
sc-element, including those sc-connectors that
do not have the specified syntactic or semantic
sc-element class. The solution to this problem
is possible by modifying the existing Imple-
mentation of ostis-platform sc-memory, namely,
the implementation of a new sc-memory model
(for example, on the file system of the modern
Linux operating system).

• Implementation of the OSTIS Ecosystem [20],
[21] requires strong development of the Imple-
mentation of the subsystem for interacting with
the external environment using languages of
network interaction, with the help of which
ostis-systems, which are developed on the
current Software implementation of the ostis-
platform, will be able to fully communicate
with each other. The transition of Software
implementation of the ostis-platform from the
class of server platforms to the class of client-
server platforms is required.

VII. CONCLUSION

Let us briefly list the main provisions of this work:

• The current Software implementation of the ostis-
platform is cross-platform, which allows:
– developing and maintaining the state of its com-

ponents, regardless of the implementation of the
platforms on which the tools for their design and
development are used;

– using it to solve problems on any available
devices.

• The current Software implementation of the ostis-
platform is multi-user, that is, it allows processing
several actions at the same time.

• The current Implementation of memory in the ostis-
platform is complete enough to:
– one-to-one interpret sc-models of ostis-systems,

including external information constructions that
do not belong to the SC-code;

– develop platform-specific components that require
access to sc-memory (for example, the Software
interface of Implementation of ostis-platform sc-
memory).

• The current Software implementation of the ostis-
platform is specialized, that is, it allows creating
only platform-dependent ostis-systems.

• On the basis of the current Software implementation
of the ostis-platform, the interpreter of sc-models of
ostis-systems user interfaces, interpreter of logical
models for solving problems in ostis-systems, as well
as the manager of reusable ostis-systems components
are used.

In this article, the principles underlying the Software
implementation of the ostis-platform, the principles of
documenting its components, as well as the prospects for
further development are described.

ACKNOWLEDGMENT

The author would like to thank the research groups of
the Departments of Intelligent Information Technologies
of the Belarusian State University of Informatics and
Radioelectronics and the Brest State Technical University
for their help in the work and valuable comments.

REFERENCES

[1] V. Golenkov, N. Guliakina, V. Golovko, V. Krasnoproshin,
“Methodological problems of the current state of works in the
field of artificial intelligence,” Otkrytye semanticheskie tekhnologii
proektirovaniya intellektual’nykh system [Open semantic technolo-
gies for intelligent systems], pp. 17–24, 2021.

[2] A. Sokolov, A. Golubev, “Sistema avtomatizirovannogo
proektirovaniya kompozicionnyh materialov. CHast’ 3.
Grafoorientirovannaya metodologiya razrabotki sredstv
vzaimodejstviya pol’zovatel’-sistema [System of computer-
aided design of composite materials. Part 3. Graph-oriented
methodology for the development of user-system interaction
tools],” Izvestiya SPBGETU LETI, pp. 43–57, 2021.

[3] V. Golenkov, N. Guliakina, I. Davydenko, A. Eremeev, “Methods
and tools for ensuring compatibility of computer systems,” Otkry-
tye semanticheskie tekhnologii proektirovaniya intellektual’nykh
system [Open semantic technologies for intelligent systems], pp.
25–52, 2019.

[4] A. M. Ouksel and A. Sheth, “Semantic interoperability in global
information systems,” SIGMOD Rec., vol. 28, no. 1, p. 5–12, Mar.
1999.

[5] N. Zotov, “Software platform for next-generation intelligent
computer systems,” Otkrytye semanticheskie tekhnologii proek-
tirovaniya intellektual’nykh system [Open semantic technologies
for intelligent systems], pp. 297—-326, 2022.

75



[6] D. Shunkevich, D. Koronchik, “Ontological approach to the
development of a software model of a semantic computer based
on the traditional computer architecture,” Otkrytye semanticheskie
tekhnologii proektirovaniya intellektual’nykh system [Open seman-
tic technologies for intelligent systems], pp. 75–92, 2021.

[7] V. Golenkov, N. Gulyakina, and D. Shunkevich, Otkrytaya
tekhnologiya ontologicheskogo proektirovaniya, proizvodstva
i ekspluatatsii semanticheski sovmestimykh gibridnykh
intellektual’nykh komp’yuternykh sistem [Open technology
of ontological design, production and operation of semantically
compatible hybrid intelligent computer systems], V. Golenkov,
Ed. Minsk: Bestprint, 2021.

[8] V. Ivashenko, “General-purpose semantic representation language
and semantic space,” Otkrytye semanticheskie tekhnologii proek-
tirovaniya intellektual’nykh system [Open semantic technologies
for intelligent systems], pp. 41–64, 2022.

[9] V. Golenkov, N. Guliakina, G. V., and E. V., “The standardization
of intelligent computer systems as a key challenge of the current
stage of development of artificial intelligence technologies,” Otkry-
tye semanticheskie tekhnologii proektirovaniya intellektual’nykh
system [Open semantic technologies for intelligent systems], pp.
73–88, 2018.

[10] D. Shunkevich, “Universal model of interpreting logical-semantic
models of intelligent computer systems of a new generation,”
Otkrytye semanticheskie tekhnologii proektirovaniya intellek-
tual’nykh system [Open semantic technologies for intelligent
systems], p. 285–296, 2022.

[11] M. Orlov, “Comprehensive library of reusable semantically
compatible components of next-generation intelligent computer
systems,” Otkrytye semanticheskie tekhnologii proektirovaniya in-
tellektual’nykh system [Open semantic technologies for intelligent
systems], pp. 261–272, 2022.

[12] C. Vicknair, M. Macias, Z. Zhao, X. Nan, Y. Chen, and D. Wilkins,
“A comparison of a graph database and a relational database: a
data provenance perspective,” in Proceedings of the 48th annual
Southeast regional conference, 2010, pp. 1–6.

[13] C. Chen et al., “Multi-perspective evaluation of relational and
graph databases,” 2022.

[14] A. Zagorskiy, “Factors that determine the level of intelligence of
cybernetic systems,” Otkrytye semanticheskie tekhnologii proek-
tirovaniya intellektual’nykh system [Open semantic technologies
for intelligent systems], p. 13–26, 2022.

[15] V. V. Golenkov, “Ontology-based design of intelligent systems,”
Otkrytye semanticheskie tekhnologii proektirovaniya intellek-
tual’nykh system [Open semantic technologies for intelligent
systems], pp. 37–56, 2017.

[16] T. Dillon, E. Chang, and P. Wongthongtham, “Ontology-based
software engineering-software engineering 2.0,” 04 2008, pp. 13–
23.

[17] D. Shunkevich, “Ontology-based design of hybrid problem
solvers,” Otkrytye semanticheskie tekhnologii proektirovaniya in-
tellektual’nykh system [Open semantic technologies for intelligent
systems], pp. 101–131, 2022.

[18] N. Zotov, “Semantic theory of programs in next-generation
intelligent computer systems,” Otkrytye semanticheskie tekhnologii
proektirovaniya intellektual’nykh system [Open semantic technolo-
gies for intelligent systems], pp. 297—-326, 2022.

[19] Ian Robinson, Jim Webber and Emil Eifrem, Graph databases.
O’Reilly Media, Inc., 2015.

[20] A. Zagorskiy, “Principles for implementing the ecosystem of next-
generation intelligent computer systems,” Otkrytye semanticheskie
tekhnologii proektirovaniya intellektual’nykh system [Open seman-
tic technologies for intelligent systems], p. 347–356, 2022.

[21] T. Dillon, C. wu, and E. Chang, “Gridspace: Semantic grid services
on the web-evolution towards a softgrid,” in 3rd International
Conference on Semantics, Knowledge, and Grid, SKG 2007, 11
2007, pp. 7–13.

Принципы проектирования, структура и
перспективы развития Программной

платформы ostis-систем
Зотов Н. В.

Данная работа является краткой спецификацией
текущего Программного варианта реализации ostis-
платформы. Работа показывает принципы, структуру
и перспективы развития программной платформы для
логико-семантических моделей систем, построенных
по принципам Технологии OSTIS.

Received 13.03.2023

76


