
Control Tools for Reusable Components of
Intelligent Computer Systems of a New

Generation
Maksim Orlov

Belarusian State University of
Informatics and Radioelectronics

Minsk, Belarus
Email: orlovmaksimkonst@gmail.com

Abstract—In the article, an approach to the design of
intelligent systems is considered, focused on the use of
compatible reusable components, which significantly reduces
the complexity of developing such systems. The key means
of supporting the component design of intelligent computer
systems is the manager of reusable components proposed
in the work.

Keywords—Component design of intelligent computer
systems; reusable semantically compatible components;
knowledge-driven systems; semantic networks.

I. INTRODUCTION

The main result of artificial intelligence is not the
intelligent systems themselves but powerful and effective
technologies for their development. The analysis of
modern technologies for designing intelligent computer
systems shows that along with very impressive achieve-
ments, the following serious problems occur [1], [2], [3]:

• high requirements for the initial qualifications of
users and developers. Artificial intelligence technolo-
gies are not focused on the wide range of developers
and users of intelligent systems and, therefore, have
not received mass distribution;

• there is no general unified solution to the problem
of semantic compatibility of computer systems [4].
There are no approaches that allow integrating
scientific and practical results in the field of artificial
intelligence, which generates a high degree of
duplication of results and a lot of non-unified formats
for representation of data, models, methods, tools,
and platforms;

• lack of powerful tools for designing intelligent com-
puter systems, including intelligent training subsys-
tems, subsystems for collective design of computer
systems and their components, subsystems for verifi-
cation and analysis of computer systems, subsystems
for component design of computer systems;

• long terms of development of intelligent computer
systems and high level of complexity of their
maintenance and extension;

• the degree of dependence of artificial intelligence
technologies on the platforms on which they are
implemented is high, which leads to significant
changes in technologies when transitioning to new
platforms;

• the degree of dependence of artificial intelligence
technologies on subject domains in which these
technologies are used is high;

• there is a high degree of dependence of intelligent
computer systems and their components on each
other; the lack of their automatic synchronization.
The absence of self-sufficiency of systems and
components, their ability to operate separately from
each other without loss of expediency of their use;

• increase in the time to solve the problem with the
expansion of the functionality of the problem solver
and with the expansion of the knowledge base of
the system [5];

• lack of methods for designing intelligent computer
systems. Updating computer systems often boils
down to the development of various kinds of
“patches”, which eliminate not causes of the identi-
fied disadvantages of updated computer systems but
only some of the consequences of these causes;

• poor adaptability of modern computers to the ef-
fective implementation of even existing knowledge
representation models and models for solving prob-
lems that are difficult to formalize, which requires
the development of fundamentally new computers
[6];

• there is no single approach to the allocation of
reusable components and the formation of libraries
of such components, which leads to a high complex-
ity of reuse and integration of previously developed
components in new computer systems.

To solve these problems, it is necessary to implement a
comprehensive technology for designing intelligent com-
puter systems, which includes the following components:

• a model of an intelligent computer system [7];

191



• a library of reusable components and corresponding
tools to support component design of intelligent
computer systems;

• an intelligent integrated automation system for the
collective design of intelligent computer systems,
including subsystems for editing, debugging, perfor-
mance evaluation, and visualization of developed
components, as well as a simulation subsystem;

• methods of designing intelligent computer systems;
• an intelligent user interface;
• training subsystems for designing intelligent com-

puter systems, including a subsystem for conducting
a dialog with the developer and the user;

• a subsystem for testing and verification of intelligent
computer systems, including a subsystem for testing
the compatibility of the developed system with other
systems;

• an information security support subsystem for the
intelligent computer system.

The key component of the technology for intelligent
systems design is a library of reusable components and the
corresponding tools for supporting component design of
intelligent computer systems. With its help, it is possible
to effectively implement the typical subsystems to support
the design of intelligent computer systems.

Most of the existing systems are created as self-
contained software products that cannot be used as
components of other systems. It is necessary to use either
the whole system or nothing. A small number of systems
support a component-oriented architecture capable of
integrating with other systems [8], [9]. However, their
integration is possible if the same technologies are used
and only when designed by one development team [10].

Repeated re-development of existing technical solutions
is conditioned either by the fact that known technical
solutions are hardly integrated into the system being
developed or by the fact that these technical solutions
are difficult to be found. This problem is relevant both
in general in the field of computer systems development
and in the field of knowledge-based systems development,
since in systems of this kind the degree of consistency of
various knowledge types affects the ability of the system
to solve non-trivial problems.

The development technology should allow components
to be reused, integrated with other components built using
both this and other technologies. It should also be open to
allow using components by different development teams.

Reuse of ready-made components is widely used in
many fields related to the design of various kinds of
systems, since it reduces the complexity of development
and its cost (by minimizing the amount of labor due to the
absence of the need to develop any component), improves
the quality of the systems being created, and reduces
professional requirements for computer system developers
[11]. Thus, there is a transition from programming

components or entire systems to their design (assembly)
based on ready-made components. Component design
of intelligent computer systems involves the selection of
existing components capable of solving the problem in
its entirety or the decomposition of the problem into
subproblems with the allocation of components for each
of them (see [12]). The designed systems according to the
proposed technology have a high level of flexibility, their
development is carried out in stages, moving from one
complete version of the system to another. At the same
time, the starting version of the system can be the core of
the corresponding class of systems included in the library
of reusable components. The technology of component
design of intelligent computer systems includes a set
of coordinated particular technologies that ensure the
comprehensive design of computer systems. It includes
the technology of component design of knowledge bases,
problem solvers, interfaces, and others.

The main element of the semantic technology for
component design of intelligent systems is the library of
compatible reusable components. This allows designing
intelligent systems by combining existing components,
selecting the right ones from the appropriate libraries.
The use of ready-made components assumes that the
distributed component is verified and documented, and
possible errors and limitations are eliminated or specified
and known. The creation of the library of reusable
components does not mean the re-creation of all existing
modern information technology products. The technology
of component design of intelligent computer systems
involves the use of vast experience in the development of
modern computer systems, however, it is required to create
a specification of each component (both newly created
and existing integrated ones) to ensure its installation
and compatibility with other components and systems.
Nevertheless, an effective component design technology
will appear only when a “critical mass” of application
system developers participating in the seeding of libraries
of reusable components of the designed systems is formed.

The problems of implementing the component approach
to the design of intelligent computer systems inherit the
problems of modern technologies for designing intelligent
systems and also include the following ones [13]:

• incompatibility of components developed within
different projects due to the lack of unification
in the principles of representing different types of
knowledge within the same knowledge base, and,
as a consequence, the lack of unification in the
principles of allocation and specification of reusable
components;

• inability to automatically integrate components into
the system without manual user intervention;

• automatic updating of components leads to inconsis-
tency of both particular modules of computer systems
and the systems themselves with each other;

192



• lack of classification of components at different
levels of detail;

• testing, verification, and analysis of the components
quality are not carried out; advantages, disadvantages,
limitations of components are not identified;

• development of standards that ensure the compati-
bility of these components is not being carried out;

• many components use the language of the developer
for identification (usually English), and it is assumed
that all users will use the same language. However,
for many applications, this is unacceptable – identi-
fiers that are understandable only to the developer
should be hidden from end users, who should be
able to choose the language for the identifiers they
see;

• lack of tools to search for components that meet the
specified criteria.

Component design of intelligent computer systems is
possible only if the selection of components is carried out
on the basis of a thorough analysis of the quality of these
components. One of the most important criteria for such
an analysis is the level of semantic compatibility of the
analyzed components with all the components available
in the current version of the library.

In addition to a powerful library of reusable se-
mantically compatible components, an appropriate tool
is needed for managing (installing into child systems,
searching, updating, forming) such components. Such
a tool should be built according to the same principles
as intelligent computer systems of a new generation to
ensure semantic compatibility of intelligent systems, their
components, and their design tools.

The purpose of the work is to create a tool to support
the component design of intelligent computer systems
of a new generation. Such a tool is necessary to use the
full potential of the infinitely extensible comprehensive
libraries of reusable components. The fields where
the technology of component design of semantically
compatible intelligent systems is applied in practice have
no limits.

II. ANALYSIS OF EXISTING APPROACHES TO SOLVING
THE PROBLEM

At the moment, there is no comprehensive library of
reusable semantically compatible components of computer
systems in general, aside from intelligent ones. There
are some attempts to create libraries of typical methods
and programs for traditional computer systems, but such
libraries do not solve the above problems.

The term “library of subprograms” was one of the
first mentioned by M. Wilkes, D. Wheeler, and S. Gill
as one of the forms for organizing calculations on a
computer (considered in [14]). Based on what is stated
in their book, a library is understood as a set of “short,
pre-prepared programs for certain, frequently occurring

(standard) computing operations”. It is worth noting that
the components of libraries are not only programs but
also components of interfaces and knowledge bases.

Traditional solutions include package managers of
programming languages and operating systems, as well as
separate systems and platforms with built-in components
and tools for saving created components.

Library components can be implemented in different
programming languages (which leads to the fact that
for each programming language, its own libraries are
developed with their own solutions to various frequently
occurring situations) and can also be located in different
places, which leads to the fact that a tool is needed in
the library to search for components and install them.

Modern package managers such as npm, pip, apt,
maven, poetry, and others have the advantage of be-
ing able to resolve conflicts when installing dependent
components, but they do not take into account the
semantics of components and only install components by
ID [15]. Libraries of such components are only a storage
of components, which does not take into account the
purpose of components, their advantages and disadvan-
tages, scope of application, hierarchy of components, and
other information necessary for the intellectualization of
component design of computer systems. Searching for
components in libraries of components corresponding
to these package managers is reduced to searching
by component ID. Modern package managers are only
“installers” without automatic integration of components
into the system. Similarly, a significant disadvantage
of the modern approach is the platform dependency of
components. Modern component libraries are focused only
on a specific programming language, operating system,
or platform.

The pip package manager is a package management
system that is used to install packages from the Python
Package Index, which is some library of such packages.
Pip is often installed with Python. The pip package man-
ager is used only for the Python programming language.
It has many functions for working with packages:

• installation of a package;
• installation of a package of a specialized version;
• deletion of a package;
• reinstallation of a package;
• display of installed packages;
• search for packages;
• verification of package dependencies;
• creation of a configuration file with a list of installed

packages and their versions;
• installation of a set of packages from a configuration

file.

The pip package manager works well with dependen-
cies, displays unsuccessfully installed packages, and also
displays information about the required package version

193



Figure 1. pip configuration file

in case of conflict with another package. An example of
a pip package configuration file is shown in Figure 1.

An alternative to the pip package manager is the poetry
package manager, which is also focused on the Python
programming language. The advantage of poetry over pip
is that it automatically works with virtual environments, is
able to find and create them independently. The configura-
tion file for poetry packages is more comprehensive than
that of pip, it stores such information as the project name,
project version, its description, license, list of authors,
URL of the project, its documentation, and website, a
list of project keywords, and a list of PyPI classifiers.
Poetry allows configuring packages for Python projects
more flexibly, the poetry configuration file is a more
extensive project specification (see Figure 2), however,
this specification does not allow for compatibility between
components even within Python projects and is intended
primarily for read-only by the developer.

Figure 2. poetry configuration file

It is impossible to automate the design of computer
systems using the poetry or pip package manager, since
it requires the intervention of a developer who needs to
manually combine the interfaces of the installed packages.
Other package managers of programming languages and
operating systems are arranged according to the same

principle: there is a component storage (library), which
is a set of packages of this programming language or
operating system and with which the component manager
interacts.

As a component approach to program design, it is
possible to consider libraries of subprograms of modern
programming languages, for example, STL Library (a
library of standard C++ templates).

The STL Library is a set of consistent generalized
algorithms, containers, means of accessing their contents,
and various auxiliary functions in C++.

There are five main components of the STL Library:
• container – storage of a set of objects in memory;
• iterator – provision of access means to the contents

of the container;
• algorithm – determination of the computational

procedure;
• adapter – adaptation of components for providing

different interface;
• functional object – privacy of a function in an object

for use by other components.
The structure of the STL Library is shown in Figure 3.

Figure 3. Structure of the STL Library

Separation allows reducing the number of components.
For example, instead of writing a separate element search
function for each container type, a single version is
provided that works with each of them as long as the
basic requirements are met.

The compatibility of components (containers) in the
STL Standard Template Library is provided by a common
interface for using these components.

The component approach to the design of computer
systems can be implemented within various languages,
platforms, and applications. Let us consider some of them.

The ontology implemented in OWL (Web Ontology
Language) is a set of declarative statements about the
entities of the dictionary of a subject domain (discussed
in more detail in [16]). OWL assumes the concept of
an “open world”, according to which the applicability
of subject domain descriptions placed in a specific
physical document is not limited only to the scope of this
document – the contents of the ontology can be used and
supplemented by other documents adding new facts about
the same entities or describing another subject domain in

194



terms of this one. The “openness of the world” is achieved
by adding a URI to each element of the ontology, which
makes it possible to understand the ontology described
in OWL as part of a universal unified knowledge.

WebProtege is a multi-user web interface that allows
editing and storing ontologies in the OWL format in a
collaborative environment [17]. This project allows not
only creating new ontologies but also loading existing
ontologies that are stored on the Stanford University
server. The advantage of this project is the automatic error
checking in the process of creating ontology objects. This
project is an example of an attempt to solve the problem
of accumulation, systematization, and reuse of existing
solutions, however, the disadvantage of this solution is
the isolation of the ontologies being developed. Each
developed component has its own hierarchy of concepts,
an approach to the allocation of classes and entities
that depend on the developers of these ontologies, since
within this approach, there is no universal model of
knowledge representation, as well as formal specification
of components represented in the form of ontologies.
Consequently, there is a problem of their semantic
incompatibility, which, in turn, leads to the impossibility
of reuse of the developed ontologies in the knowledge
bases design. This fact is confirmed by the presence on
the Stanford University server of a variety of different
ontologies on the same topics.

Based on the Modelica language, a large number of
freely available component libraries have been developed,
one of which is the Modelica_StateGraph2 library, which
includes components for modeling discrete events, reac-
tive, and hybrid systems using hierarchical state diagrams
[18]. The main disadvantage of Modelica-based systems
is the lack of component compatibility and sufficient
documentation.

Microsoft Power Apps is a set of applications, services,
and connectors, as well as a data platform that provides a
development environment for efficiently creating user
applications for business. The Power Apps platform
provides tools for creating a library of reusable graph-
ical interface components, as well as pre-created text
recognition models (reading visiting cards or cheques)
and an object detection tool that can be connected to
the application being developed [19]. The Power Apps
component library is a set of user-created components
that can be used in any application. The advantage of the
library is that components can configure default properties
that can be flexibly edited in any applications that use
the components. The disadvantage lies in the lack of
semantic compatibility of components, the specification of
components; the problem of the presence of semantically
equivalent components has not been solved; there is no
hierarchy of components and means of searching for these
components.

The IACPaaS platform is designed to support the

development, management, and remote use of applied
and instrumental multi-agent cloud services (primarily
intelligent ones) and their components for various subject
domains [20]. The platform provides access to:

• application users (specialists in various subject
domains) – to applied services;

• developers of applied and instrumental services and
their components – to instrumental services;

• intelligent services managers and management ser-
vices.

The IACPaaS platform supports:
• the basic technology for the development of applied

and specialized instrumental (intelligent) services
using the basic instrumental services of the platform
that support this technology;

• a variety of specialized technologies for the de-
velopment of applied and specialized instrumental
(intelligent) services, using specialized platform tool
services that support these technologies.

The IACPaaS platform also does not contain means for
a unified representation of the components of intelligent
computer systems and means for their specification and
automatic integration.

Based on the analysis carried out, it can be said that
at the current state of development of information tech-
nologies, there is no comprehensive library of reusable
semantically compatible components of computer systems
and corresponding component management tools. Thus,
it is proposed to implement a library and an appropriate
component management tool that will implement seamless
integration of components, ensure semantic compatibil-
ity of systems and their components, and significantly
simplify the design of new systems and their components.

III. PROPOSED APPROACH

Within this article, it is proposed to take an OSTIS
Technology [21] as a basis, the principles of which
make it possible to implement a semantic technology
for designing intelligent systems, including a library of
reusable components, component design support tools,
and other components of the technology. The OSTIS
Technology makes it possible to quickly create knowledge-
driven systems using ready-made compatible components.

The systems developed on the basis of the OSTIS Tech-
nology are called ostis-systems. The OSTIS Technology is
based on a universal method of semantic representation
(encoding) of information in the memory of intelligent
computer systems, called an SC-code. Texts of the SC-
code (sc-texts) are unified semantic networks with a
basic set-theoretic interpretation, which allows solving the
problem of compatibility of various knowledge types. The
elements of such semantic networks are called sc-elements
(sc-nodes and sc-connectors, which, in turn, depending on
orientation, can be sc-arcs or sc-edges). The Alphabet of
the SC-code consists of five main elements, on the basis

195



of which SC-code constructions of any complexity are
built, including more specific types of sc-elements (for
example, new concepts). The memory that stores SC-code
constructions is called semantic memory, or sc-memory.

Within the technology, several universal variants of
visualization of SC-code constructions are proposed,
such as SCg-code (graphic variant), SCn-code (nonlinear
hypertext variant), SCs-code (linear string variant).

Within this article, fragments of structured texts in the
SCn code [22] will often be used, which are simulta-
neously fragments of the source texts of the knowledge
base, understandable to both human and machine. This
allows making the text more structured and formalized,
while maintaining its readability. The symbol “:=” in
such texts indicates alternative (synonymous) names of
the described entity, revealing in more detail certain of
its features.

The basis of the knowledge base within the OSTIS
Technology is a hierarchical system of subject domains
and ontologies.

In order to solve the problems that have arisen in the
design of intelligent systems and libraries of their reusable
components, it is necessary to adhere to the general prin-
ciples of the technology for intelligent computer systems
design, as well as meet the following requirements:

• ensuring compatibility (integrability) of components
of intelligent computer systems based on the unifying
representation of these components;

• clear separation of the process of developing formal
descriptions of intelligent computer systems and the
process of their implementation according to this
description;

• clear separation of the development of a formal de-
scription for the designed intelligent system from the
development of various options for the interpretation
of such formal descriptions of the systems;

• availability of an ontology for component design
of intelligent computer systems, including (1) a
description of component design methods, (2) a
model of a library of reusable components, (3) a
model of a specification of reusable components, (4)
a complete classification of reusable components,
(5) a description of means for interaction of the
developed intelligent computer system with libraries
of reusable components;

• availability of libraries of reusable components of
intelligent computer systems, including component
specifications;

• availability of means for interaction of the developed
intelligent computer system with libraries of reusable
components for installation of any types of compo-
nents and their management in the created system.
The installation of a component means not only its
transportation to the system (copying sc-elements
and/or downloading component files) but also the

subsequent execution of auxiliary actions so that the
component can operate in the system being created.

Based on this, in order to solve the problems set within
this article, it is proposed to develop the following system
of subject domains and corresponding ontologies:

Subject domain of reusable ostis-systems components
⇒ private subject domain*:

Subject domain of a library of reusable
ostis-systems components

Subject domain of the manager of reusable
ostis-systems components

The Subject domain of reusable ostis-systems compo-
nents describes the concept of a reusable component,
the classification of components, and their general spec-
ification. This subject domain allows creating new and
specifying existing components to add them to the library.

As a reusable ostis-systems component, a component of
some ostis-system that can be used within another ostis-
system is understood (see [13]). This is a component
of the ostis-system that can be used in other ostis-
systems (child ostis-systems) and contains all those
and only those sc-elements that are necessary for the
functioning of the component in the child ostis-system.
In other words, it is a component of some maternal
ostis-system, which can be used in some child ostis-
system. To include a reusable component in some system,
it must be installed in this system, that is, all the sc-
elements of the component should be copied into it
and, if necessary, auxiliary files, such as the source or
compiled component files. Reusable components must
have a unified specification and hierarchy to support
compatibility with other components. The compatibility
of reusable components leads the system to a new quality,
to an additional extension of the set of problems to be
solved when integrating components.

reusable ostis-systems component
:= [typical ostis-systems component]
:= [reused ostis-systems component]
:= [reusable OSTIS component]
:= [ostis-systems ip-component]
:= frequently used sc-identifier*:

[reusable component]
⊂ ostis-system component
⊂ sc-structure

The requirements for reusable ostis-systems compo-
nents inherit the common requirements for the design of
software components and also include the following ones
[23]:

• there is a technical possibility to embed a reusable
component into a child ostis-system;

196



• a reusable component should perform its functions
in the most general way, so that the range of possible
systems in which it can be embedded is the widest;

• compatibility of a reusable component: the com-
ponent should strive to increase the level of
negotiability of ostis-systems in which it is embed-
ded and be able to be automatically integrated into
other systems;

• self-sufficiency of components, that is, their ability
to operate separately from other components without
losing the appropriateness of their use.

In the Subject domain of the library of reusable ostis-
systems components, the most common concepts and
principles are described, which are valid for any library
of reusable components. This subject domain allows
building many different libraries, each of which will be
semantically compatible with any other built according to
the proposed principles. Such libraries store components
and their specifications for use in child ostis-systems. An
example of a specification of a reusable ostis-systems
component is shown in Figure 4.

library of reusable ostis-systems components
⇒ frequently used sc-identifier*:

[library of ostis-systems components]
⇒ frequently used sc-identifier*:

[library of components]
:= [library of compatible reusable components]
:= [comprehensive library of reusable semantically

compatible ostis-systems components]
:= [library of reusable and compatible components of

intelligent computer systems of a new generation]
:= [library of typical ostis-systems components]
:= [library of reusable OSTIS components]
:= [library of reused OSTIS components]
:= [library of intelligent property ostis-systems com-

ponents]
:= [library of ostis-systems ip-components]
∋ typical example ′:

OSTIS Metasystem Library
:= [Distributed library of typical (reusable)

ostis-systems components as part of the
OSTIS Metasystem]

:= [Library of reusable ostis-systems compo-
nents as part of the OSTIS Metasystem]

∋ typical example ′:
OSTIS Metasystem Library
⇒ frequently used sc-identifier*:

[OSTIS Library]
:= [Library of reusable and compatible com-

ponents of intelligent computer systems
of a new generation]

:= [Library of typical components of intelli-
gent computer systems of a new genera-
tion]

:= [Distributed library of typical (reusable)
ostis-systems components as part of the
OSTIS Ecosystem]

:= [Library of reusable ostis-systems compo-
nents as part of the OSTIS Ecosystem]

⇐ combination*:
{{{• library of reusable components of

ostis-systems knowledge bases
• library of reusable components of

ostis-systems problem solvers
• library of reusable components of

ostis-systems interfaces
• library of embedded ostis-systems
• library of ostis-platforms

}}}

First versions for the full contents of the Subject
domain of reusable ostis-systems components and the
Subject domain of the library of reusable ostis-systems
components are represented in the work [24].

The manager of reusable ostis-systems components
is the main means of supporting component design
of intelligent computer systems built by the OSTIS
Technology. It allows installing reusable components in
ostis-systems and controlling them. The Subject domain
of the manager of reusable ostis-systems components
contains the full specification for the manager of ostis-
systems components, the requirements for the component
manager, its functionality, the specification of the im-
plementation option for the manager of ostis-systems
components, including the sc-model of the knowledge
base, the problem solver, and the interface.

Before considering the model of the manager of
reusable ostis-systems components, let us consider the
general model of any library of reusable ostis-systems
components, with which the component manager interacts,
and the most important classes of reusable components.
Next, we will consider in more detail the fragments for sc-
models of the Subject domain of the manager of reusable
ostis-systems components.

IV. LIBRARY OF REUSABLE OSTIS-SYSTEMS
COMPONENTS

The basis for the implementation of the component
approach within the OSTIS Technology is the OSTIS
Metasystem Library. The OSTIS Metasystem is focused
on the development and practical implementation of
methods and tools for component design of semantically
compatible intelligent computer systems, which provides
an opportunity to quickly create intelligent systems
for various purposes. The OSTIS Metasystem includes
the OSTIS Metasystem Library. The scope of practical
application for the technology of component design of
semantically compatible intelligent systems does not have
any limits.

197



Figure 4. An example of a specification of a reusable ostis-systems component

The OSTIS Metasystem acts as the maternal system
for all ostis-systems being developed, since it contains
all the basic components for their development (Figure
5).

Functionality of any library of reusable ostis-systems
components (see [24]):

• storage of reusable ostis-systems components and
their specifications. At the same time, some of the
components specified within the library may be
physically stored elsewhere due to the peculiarities
of their technical implementation (for example, the
source texts of the ostis-platform may be physically
stored in some separate storage, but they will be spec-
ified as a component of the corresponding library). In
this case, the specification of the component within

the library should also include a description of (1) the
where the component is located and (2) the scenario
of its automatic installation in a child ostis-system;

• viewing available components and their specifi-
cations, as well as searching for components by
fragments of their specification;

• storage of information about components use statis-
tics. For example, in which child ostis-systems which
of the library components and which version are
used (are downloaded). This is necessary to take
into account the demand for a particular component,
to assess its importance and popularity;

• systematization of reusable ostis-systems compo-
nents;

• provision of versioning of reusable ostis-systems

198



Figure 5. Architecture of the OSTIS Ecosystem in terms of libraries of reusable components

components;
• search for dependencies between reusable compo-

nents within the library of components;
• provision of automatic updating of components

borrowed into child ostis-systems. This function can
be turned on and off at the request of the developers
of the child ostis-system. Simultaneous updating of
the same components in all systems using it should
not in any context lead to inconsistency between
these systems. This requirement may turn out to be
quite complicated, but without it the work of the
OSTIS Ecosystem is impossible.

The library of reusable ostis-systems components is
an embedded ostis-system. It has its own knowledge base,
its own problem solver, and its own interface. However,
not every ostis-system is required to have a library of
components.

Let us consider the most important classes of reusable
ostis-systems components from the point of view of the
manager of reusable components.

reusable ostis-systems component
⇒ subdividing*:

{{{• atomic reusable ostis-systems component
• non-atomic reusable ostis-systems

component
}}}

The typology of ostis-systems components by atomicity.
An atomic reusable ostis-systems component is a compo-
nent that in the current state of the ostis-systems library
is considered as indivisible, that is, does not contain

other components in its structure. A non-atomic reusable
component in the current state of the ostis-systems library
contains other atomic or non-atomic components in its
structure and does not depend on its own parts. Without
any part of the non-atomic component, its purpose re-
stricts. The manager of reusable ostis-systems components
allows installing both a whole non-atomic component
and a selected subset of its constituent components. At
the same time, there can be no inconsistency of such a
combined component due to semantic compatibility of
reusable ostis-systems components.

reusable ostis-systems component
⇒ subdividing*:

{{{• dependent reusable ostis-systems
component

• independent reusable ostis-systems
component

}}}

The typology of ostis-systems components by depen-
dency. A dependent reusable ostis-systems component
depends on at least one other component of the ostis-
systems library, i.e. it cannot be embedded in a child
ostis-system without the components on which it depends.
The independent component does not depend on any other
component of the ostis-systems library. When installing
dependent components, the component manager installs
all its dependencies, otherwise the component cannot
operate in a child ostis-system. If any component, which
is a dependency of another, is not installed and it is not
possible to install any equivalent component, then the

199



installation of the dependent component in the current
state of the ostis-system and the component libraries used
by it is impossible.

reusable ostis-systems component
⇒ subdividing*:

{{{• reusable ostis-systems component stored
as external files

• reusable ostis-systems component stored
as an sc-structure

}}}

reusable ostis-systems component stored as external
files
⇒ subdividing*:

{{{• reusable ostis-systems component stored
as source files

• reusable ostis-systems component stored
as compiled files

}}}

The typology of ostis-systems components by their
storage method. A reusable component stored as an sc-
structure is integrated into child systems in the simplest
and most convenient way. The installation of such
components takes place by copying the sc-elements of the
structure from one ostis-system to another. When storing
reusable components as external files, not all components
can be dynamically installed. At this stage of development
of the OSTIS Technology, it is more convenient to store
components in the form of source texts.

reusable ostis-systems component
⇒ subdividing*:

{{{• platform-dependent reusable ostis-systems
component

• platform-independent reusable
ostis-systems component

}}}

The typology of ostis-systems components depending on
the ostis-platform. A platform-dependent reusable ostis-
systems component is a component partially or fully
implemented with the help of any third-party means
from the point of view of the OSTIS Technology. The
disadvantage of such components is that the integration
of such components into intelligent systems may be
accompanied by additional difficulties depending on the
specific means of implementing the component. As a
potential advantage of platform-dependent reusable ostis-
systems components, it is possible to allocate their, as a
rule, higher performance due to their implementation
at a level closer to the platform one. In general, a
platform-dependent reusable ostis-systems component can
be supplied either as a set of source codes or compiled.

The process of integrating a platform-dependent reusable
ostis-systems component into a child system developed
using the OSTIS Technology strongly depends on the
implementation technologies of this component and in
each case may consist of various stages. Each platform-
dependent reusable ostis-systems component must have
the appropriate detailed, correct, and understandable
instructions for its installation and implementation in
the child system using the component manager. A
platform-independent reusable ostis-systems component
is a component that is entirely represented in the SC-code.
The process of integrating a platform-dependent reusable
ostis-systems component into a child system developed
using the OSTIS Technology is significantly simplified
by using a common unified formal basis for knowledge
representation and processing.

The most valuable are platform-independent reusable
ostis-systems components.

reusable ostis-systems component
⇒ subdividing*:

{{{• dynamically installed reusable
ostis-systems component
:= [reusable component, the installa-

tion of which does not require a
restart of the system]

• reusable component, the installation of
which requires a restart of the system

}}}

dynamically installed reusable ostis-systems component
⇒ decomposition*:

{{{• reusable component stored as compiled
files

• reusable knowledge base component
}}}

The typology of ostis-systems components according
to the dynamics of their installation. The process of
integrating components of different types at different
stages of the ostis-systems life cycle can be different. The
most valuable components are those that can be integrated
into a working system without stopping its functioning.
Some systems, especially control ones, cannot be stopped,
but components need to be installed and updated.

An embedded ostis-system is a non-atomic reusable
component that consists of a knowledge base, a problem
solver, and an interface.

embedded ostis-system
⊂ ostis-system
⊂ non-atomic reusable ostis-systems component
⇒ decomposition*:

{{{

200



• reusable component of ostis-systems
knowledge bases

• reusable component of ostis-systems
problem solvers

• reusable component of ostis-systems
interfaces

}}}

As such systems, for example, an intelligent interface
(including a natural language interface), an environment
for collective design of knowledge bases, a manager of
reusable ostis-systems components, a training system, a
system for testing and verification of intelligent systems,
a visual web-oriented editor of sc.g-texts, and others can
act.

The peculiarity of embedded ostis-systems is that the
integration of entire intelligent systems involves the
integration of the knowledge bases of these systems, the
integration of their problem solvers, and the integration
of their intelligent interfaces. When integrating embedded
ostis-systems, the knowledge base of the embedded
system becomes part of the knowledge base of the system
into which it is embedded. The problem solver of the
embedded ostis-system becomes part of the problem
solver of the system into which it is embedded. And
the interface of the embedded ostis-system becomes part
of the interface of the system into which it is embedded.
From the point of view of the component manager, this
is equivalent to installing a non-atomic reusable ostis-
systems component, that is, a separate installation of all
its components. At the same time, the embedded system
is integral and can function separately from other ostis-
systems, unlike other reusable components.

Embedded ostis-systems are often subject-independent
reusable components. Thus, for example, an embedded
ostis-system in the form of a knowledge base design
environment can be integrated both into a system from
the subject domain of geometry and into an agricultural
facilities management system.

The embedded ostis-system, like any other reusable
ostis-systems component, should support semantic com-
patibility of ostis-systems. Both the embedded ostis-
system itself and all its components must be specified
and coordinated. Components of embedded ostis-systems
can be replaced with others having the same purpose, for
example, a natural language interface can have different
versions of the knowledge base depending on the natural
language supported by the system, different interface
options, depending on the requirements and convenience
of users, and also various options for implementing a
problem solver for natural language processing, which
can use different models but solve the same problem.
The manager of reusable components allows flexibly
selecting certain components of embedded ostis-systems,
while maintaining their integrity and overall functionality.
The embedded ostis-system connects with the system in

which it is embedded using the embedded ostis-system*
relation.

V. MANAGER OF REUSABLE OSTIS-SYSTEMS
COMPONENTS

The manager of reusable ostis-systems components is a
subsystem of the ostis-system, through which interaction
with the library of reusable ostis-systems components
takes place.

manager of reusable ostis-systems components
⊂ embedded ostis-system
⊂ platform-dependent reusable ostis-systems

component
:= frequently used sc-identifier*:

[manager of reusable components]
:= frequently used sc-identifier*:

[component manager]
⇒ generalized decomposition*:

{{{• knowledge base of the manager of
reusable ostis-systems components

• problem solver of the manager of
reusable ostis-systems components

• interface of the manager of reusable
ostis-systems components

}}}
∋ Implementation of the manager of reusable

ostis-systems components
⇒ component address*:

[https://github.com/ostis-ai/sc-component-
manager]

The knowledge base of the component manager
contains all the knowledge that is necessary to install
reusable components in the child ostis-system. Such
knowledge includes knowledge about the specification of
reusable components, methods of installing components,
knowledge about the libraries of ostis-systems with which
interaction occurs, classification of components, and
others.

The problem solver of the manager of reusable
ostis-systems components interacts with the library of
reusable ostis-systems components and allows installing
and integrating reusable components into a child ostis-
system, as well as searching, updating, publishing, delet-
ing components, and other operations with them. At a
minimum, the component manager should provide the
following functionality:

• Search for reusable ostis-systems components.
The set of possible search criteria corresponds
to the specification of reusable components. As
such criteria, the component classes, its authors,
identifiers, a fragment of a note, purpose, belonging
to a subject domain, the type of knowledge of the
component, and others can serve.

201



• Installation of a reusable ostis-systems component.
The installation of a reusable component takes
place regardless of the type, installation method,
and location of the component. A necessary con-
dition for the possibility of installing a reusable
component is the availability of the specification
of a reusable ostis-systems component. Before
installing a reusable component into a child system,
all dependent components must be installed. Also, for
platform-dependent components, it may be necessary
to perform additional steps for component instal-
lation, depending on the specific implementation
of the component. After the component has been
successfully installed, an information construction
is generated in the knowledge base of the child
system, indicating the fact that the component has
been installed into the system using the installed
components* relation.

• Addition and removal of library components
controlled by the manager. The component man-
ager contains information about a variety of sources
for installing components, the list of which can be
supplemented. By default, the component manager
monitors the OSTIS Metasystem Library, however, it
is possible to create and add optional ostis-systems
libraries.

Based on the specified minimum functionality, the
problem solver of the manager of reusable ostis-systems
components represents the following hierarchy of abstract
sc-agents:

problem solver of the manager of reusable
ostis-systems components
⇒ decomposition of an abstract sc-agent*:

{{{• Abstract sc-agent for searching for
reusable ostis-systems components

• Abstract sc-agent for installing reusable
ostis-systems components

• Abstract sc-agent for managing library
components controlled by the manager

}}}

Abstract sc-agent for managing library components
controlled by the manager
⇒ decomposition of an abstract sc-agent*:

{{{• Abstract sc-agent for adding a library
controlled by the component manager

• Abstract sc-agent for deleting a library
controlled by the component manager

}}}

Using minimal functionality, the component manager
can install components that will extend its functionality.
Components that implement the extended functionality of
the component manager are part of the OSTIS Metasystem

Library. The extended functionality includes:

• Specification of a reusable ostis-systems compo-
nent. The component manager allows specifying
the components that are part of the ostis-systems
library, as well as specifying new components that
are being created, which will be published to the
ostis-systems library. In this case, the specification
can occur both automatically and manually. For
example, the component manager can update the
specification of the component used in accordance
with which new ostis-systems have installed it,
update the specification of the authorship of the
component when editing it in the ostis-systems
library or the specification of errors detected during
the operation of the component, etc.

• Creation of a reusable ostis-systems component
according to a template with specified parameters.
When installing a template for a reusable ostis-
systems component, the component manager allows
creating a specific component based on it. To do
this, the user is asked to determine the values of
all sc-variables in the template to form a specific
component from a certain subject domain. For
example, to form a reusable component of knowledge
bases, which is a semantic neighborhood of some
relation (see Figure 6), it is necessary to determine
the values of all variables, except for the variable
that is the key sc-element of this structure.

• Publication of a reusable ostis-systems component
to the ostis-systems library. When a component is
published to the ostis-systems library, verification
takes place based on the component specification.
The publication of a component can be accompanied
by the assembly of a non-atomic component from
existing atomic ones. It is also possible to update
the version of the published component by the team
of its developers.

• Update of an installed reusable ostis-systems com-
ponent.

• Deletion of an installed reusable component. As
in the case of installation, after deleting a reusable
component from the ostis-system, the fact of deleting
the component is established in the knowledge base
of the system. This information is an important part
of the operational history of the ostis-system.

• Edition of a reusable component in the ostis-systems
library.

• Comparison of reusable ostis-systems components.

The interface of the manager of reusable ostis-systems
components provides convenient use of the component
manager for the user and other systems. The minimal
interface of the component manager is console-based
and allows accessing the functionality of the component
manager using commands. The minimal interface is
available for both users and other ostis-systems. The

202



Figure 6. Example of a template for a semantic neighborhood of a
relation

extended interface is graphical and is part of the OSTIS
Metasystem Library. It can be installed using the reusable
component manager. Thus, the component manager allows
developing not only the systems in which it is embedded
but also itself.

In order to create a new ostis-system “from scratch”
using the ostis-platform, it is necessary to install some
Software implementation option of the ostis-platform using
third-party tools. As such tools, (1) platform source
code storages, for example, cloud storages, such as a
GitHub repository, with an appropriate set of platform
installation instructions, or (2) installation tools for a
pre-compiled software implementation of the platform,
for example, an apt software installation tool, can serve.
Next, the installation of reusable components in the
ostis-system (regardless of the type of components) is
carried out using the component manager. When installing
platform-dependent components, the component manager
must manage the appropriate means of assembling such
components (CMake, Ninja, npm, grunt, and others).

In order to store reusable ostis-systems components,
some storage is needed. In addition to the external files
of the component, its specification must be located in the
storage. As such a storage, (1) a library of reusable ostis-
systems components or (2) files in some cloud storage can
act. In the case when a component is stored in a library,
to install it, the component manager copies all the sc-
elements, which represent the component, to a child ostis-
system. In the case when the component is stored as files
in the cloud storage, the component manager downloads
the component files and installs them according to the
specification. The addresses of component specification
storages should be stored in the knowledge base of the
component manager in order to have access to component
specifications for their subsequent use (search, installation,
etc.). In Figure 7, there is an example for a fragment of
the knowledge base of the component manager, which
describes where the specifications of the components
available for installation are stored. Such a storage is
a set consisting of two sets: (1) a set of addresses of

component specifications and (2) a set of addresses of
specifications for other storages. Thus, a tree-like structure
is formed in accordance with the hierarchy of the maternal
ostis-systems and their corresponding libraries.

When specifying the address for the root of the
specification address storage tree, the component manager
gets access to all the specifications of the child storages.
When processing such a specification tree, the component
manager immerses the specifications of the components
available for installation into sc-memory but not these
components themselves.

The manager of reusable ostis-systems components is
an optional subsystem of the ostis-platform. However, a
system with a component manager can install components
not only into itself but also into other systems if it has an
access. Thus, one system can replace the ostis-platform of
another system, while leaving the sc-model of a cybernetic
system. In the same way, some ostis-system can generate
other ostis-systems using a component approach.

Inclusion of the component in the child ostis-system
generally consists of the following steps:

• search for a suitable component in a set of available
libraries;

• allocation of a component in a form convenient for
transportation to a child ostis-system with an indi-
cation of the version and modification, if necessary
(for example, selection of the available component
storage, selection of the optimal implementation
option for the component taking into account the
composition of the child system);

• installation of a reusable component and its depen-
dencies (indicating the version and modification, if
necessary);

• integration of a component into a child system;
• search and elimination of errors and contradictions

in the child system.
From the point of view of the user, this process does

not depend on the type of the component and the specifics
of its implementation.

VI. INTEGRATION OF REUSABLE OSTIS-SYSTEMS
COMPONENTS

Let us consider in more detail the process of integrat-
ing reusable ostis-systems components as a process of
immersing sc-constructions into the knowledge base. The
most valuable components are those that can be integrated
into a working system without stopping its functioning.
Such components include, for example, knowledge base
components.

The problem of integration of reusable ostis-systems
components is solved by the interaction of components
through a common knowledge base. Components can only
use common key nodes (concepts) in the knowledge base
(see [25] and [26]). Integration of reusable ostis-systems
components is reduced to matching the key nodes and

203



Figure 7. Example for the structure of the address storage of component specifications

eliminating possible duplications and contradictions based
on the specification of the component and its contents.
This way of integrating components allows them to be
developed in parallel and independently of each other,
which significantly reduces the time for design.

The process of integrating a reusable component into
an ostis-system is a system of the following interacting
processes:

• reducing a component to a unified form, that is,
representing it in the SC-code;

• coordination of the key nodes and ontologies of the
component and the knowledge base of the system;

• allocation of such sc-elements in the integrated
component that have global (unique) identifiers;

• allocation of sc-elements in the integrated component
that have local identifiers together with the scope
of each such identifier. The scope of the local
identifier is such a fragment of the knowledge base
within which different sc-elements having this local
identifier are considered synonymous;

• gluing together sc-elements having the same global
identifiers;

• gluing together sc-elements having the same local
identifiers if each of these sc-elements belongs to
the scope of its local identifier and the scope of the
local identifier of another sc-element;

• gluing together sc-elements based on the unambigu-
ity of the algebraic operations used;

• gluing together sc-elements based on logical state-
ments about the existence of uniqueness;

• gluing together multiple connectives belonging to
relations in which multiple connectives are absent

either always or under certain clearly specified
conditions.

Thus, the integration of components, that is, the process
of immersion (understanding) of one semantic network
into another, is a non-trivial process of reasoning aimed at
identifying pairs of synonymous elements of a semantic
network based on certain knowledge available in the
knowledge base of an intelligent system. Based on
these stages, it is important to clearly structure and fill
the knowledge base of the ostis-system into which the
component is integrated, as well as qualitatively specify
components and the contents of these components.

Let us consider the simplest example of integrating
a reusable component of problem solvers, which is an
sc-agent for finding the shortest path in a graph, into a
logistics process management system. Let us assume that
the logistics process management system is able to solve
problems related to cost optimization in the process of
creating and warehousing of goods. An example for a
fragment of a logistics system model is shown in Figure
8.

At the same time, the knowledge base of the system
describes what problems the system should solve and
the corresponding actions. For example, “action. find the
shortest path in the graph”, which is currently difficult
for the system to perform.

The graph theory problem-solving system has a rich
knowledge base and a problem solver, including an sc-
agent for finding the shortest path in a graph, which is
specified as a reusable component and can be used in a
logistics system (see Figure 9).

As a result of installing a reusable component in the

204



Figure 8. Structure of the logistics process management system

Figure 9. Structure of the graph theory problem-solving system

form of an sc-agent for finding the shortest path in the
graph, its entire sc-model is immersed in a logistics
problem-solving system. When integrating a reusable
component, which is an sc-agent for finding the shortest
path in a graph, into a logistics system, the key node of
the logistics system “action. find the shortest path in the
graph” is matched with the same node from the installed
component from the graph theory system. Thus, when
solving logistical problems, the system will be able to
interpret the action of finding the shortest paths using an
integrated component.

Integration of any ostis-systems components occurs
automatically, without developer intervention. This is
achieved through the use of the SC-code and its advan-
tages, the unification of the specifications of reusable
components, and the careful selection of components in
libraries by the expert community responsible for this
library.

VII. CONCLUSION

The component approach is key in the technology
of designing intelligent computer systems. At the same
time, the technology of component design is closely
related to the other components of the technology of
designing intelligent computer systems and ensures their
compatibility, producing a powerful synergetic effect
when using the entire complex of private technologies for
designing intelligent systems. The most important prin-
ciple in the implementation of the component approach

is the semantic compatibility of reusable components,
which minimizes the participation of programmers in the
creation of new computer systems and the improvement
of existing ones.

To implement the component approach, in the article, a
library of reusable compatible components of intelligent
computer systems based on the OSTIS Technology is
proposed, classification and specification of reusable
ostis-systems components is introduced, a component
manager model is proposed that allows ostis-systems
to interact with libraries of reusable components and
manage components in the system, the architecture of the
ecosystem of intelligent computer systems is considered
from the point of view of using a library of reusable
components.

The results obtained will improve the design efficiency
of intelligent systems and automation tools for the
development of such systems, as well as provide an
opportunity not only for the developer but also for the
intelligent system to automatically supplement the system
with new knowledge and skills.

REFERENCES

[1] K. Yaghoobirafi and A. Farahani, “An approach for semantic
interoperability in autonomic distributed intelligent systems,”
Journal of Software: Evolution and Process, vol. 34, p. 18, 02
2022.

[2] N. N. Skeeter, N. V. Ketko, A. B. Simonov, A. G. Gagarin, and
I. Tislenkova, “Artificial intelligence: Problems and prospects of
development,” Artificial Intelligence: Anthropogenic Nature vs.
Social Origin, p. 12, 2020.

[3] O. Yara, A. Brazheyev, L. Golovko, L. Golovko, and V. Bashka-
tova, “Legal regulation of the use of artificial intelligence:
Problems and development prospects,” European Journal of
Sustainable Development, p. 281, 2021.

[4] J. Waters, B. J. Powers, and M. G. Ceruti, “Global interoperabil-
ity using semantics, standards, science and technology (gis3t),”
Computer Standards & Interfaces, vol. 31, no. 6, pp. 1158–1166,
2009.

[5] M. Wooldridge, An introduction to multiagent systems, 2nd ed.
Chichester : J. Wiley, 2009.

[6] X. Shi, Z. Zheng, Y. Zhou, H. Jin, L. He, B. Liu, and
Q.-S. Hua, “Graph processing on GPUs,” ACM Computing
Surveys, vol. 50, no. 6, pp. 1–35, Nov. 2018. [Online]. Available:
https://doi.org/10.1145/3128571

[7] P. Lopes de Lopes de Souza, W. Lopes de Lopes de Souza, and
R. R. Ciferri, “Semantic interoperability in the internet of things:
A systematic literature review,” in ITNG 2022 19th International
Conference on Information Technology-New Generations, S. Latifi,
Ed. Cham: Springer International Publishing, 2022, pp. 333–340.

[8] I. Ashvin, Component Design for Relational Databases, 12 2021,
pp. 143–156.

[9] B. Ford, R. Schiano-Phan, and J. Vallejo, Component Design, 11
2019, pp. 160–174.

[10] A. Donatis, OOP in Component Design, 01 2006, pp. 3–31.
[11] Ryndin, Nikita and Sapegin, Sergey, “Component design of

the complex software systems, based on solutions’ multivariant
synthesis,” International Journal of Engineering Trends and
Technology, vol. 69, pp. 280–286, 12 2021.

[12] D. Shunkevich, “Agent-oriented models, method and tools of
compatible problem solvers development for intelligent systems,”
in Open semantic technologies for intelligent systems, ser. 2,
V. Golenkov, Ed. BSUIR, Minsk, 2018, pp. 119–132.

205

https://doi.org/10.1145/3128571


[13] D. V. Shunkevich, I. T. Davydenko, D. N. Koronchik, I. I.
Zukov, and A. V. Parkalov, “Sredstva podderzki komponentnogo
projectirovanija sistem ypravlyaenih znaniyami [support tools
knowledge-based systems component design],” Open semantic
technologies for intelligent systems, pp. 79–88, 2015. [Online].
Available: http://proc.ostis.net/proc/Proceedings%20OSTIS-2015.
pdf

[14] M. Wilkes, The Preparation of Programs for an Electronic Digital
Computer: With Special Reference to the EDSAC and the Use
of a Library of Subroutines, ser. Addison-Wesley mathematics
series. Addison-Wesley Press, 1951. [Online]. Available:
https://books.google.by/books?id=PzVVAAAAMAAJ

[15] J. Blähser, T. Göller, and M. Böhmer, “Thine — approach for
a fault tolerant distributed packet manager based on hypercore
protocol,” in 2021 IEEE 45th Annual Computers, Software, and
Applications Conference (COMPSAC), 2021, pp. 1778–1782.

[16] V. Torres da Silva, J. S. dos Santos, R. Thiago, E. Soares, and
L. Guerreiro Azevedo, “OWL ontology evolution: understanding
and unifying the complex changes,” The Knowledge Engineering
Review, vol. 37, p. e10, 2022.

[17] A. Memduhoglu and M. Basaraner, “Possible contributions of
spatial semantic methods and technologies to multi-representation
spatial database paradigm,” International Journal of Engineering
and Geosciences, pp. 108 – 118, Oct. 2018. [Online]. Available:
https://doi.org/10.26833/ijeg.413473

[18] P. Fritzson, Modelica Library Overview, 2015, pp. 909–975.
[19] S. Prakash Pradhan, Working with Microsoft Power Apps.

Berkeley, CA: Apress, 2022, pp. 79–131. [Online]. Available:
https://doi.org/10.1007/978-1-4842-8600-5_3

[20] V. Gribova, L. Fedorischev, P. Moskalenko, and V. Timchenko,
“Interaction of cloud services with external software and its
implementation on the IACPaaS platform,” pp. 1–11, 2021.

[21] V. Golenkov, N. Guliakina, and D. Shunkevich, Otkrytaya
tekhnologiya ontologicheskogo proektirovaniya, proizvodstva
i ekspluatatsii semanticheski sovmestimykh gibridnykh
intellektual’nykh komp’yuternykh sistem [Open technology
of ontological design, production and operation of semantically
compatible hybrid intelligent computer systems]. Minsk:
Bestprint [Bestprint], 2021, (In Russ.).

[22] (2023, September) IMS.ostis Metasystem. [Online]. Available:
https://ims.ostis.net

[23] G. Sellitto, E. Iannone, Z. Codabux, V. Lenarduzzi, A. De Lucia,
F. Palomba, and F. Ferrucci, “Toward understanding the impact
of refactoring on program comprehension,” in 29th International
Conference on Software Analysis, Evolution, and Reengineering
(SANER), 2022, pp. 1–12.

[24] M. K. Orlov, “Comprehensive library of reusable semantically
compatible components of next-generation intelligent computer
systems,” in Open semantic technologies for intelligent systems,
ser. Iss. 6. Minsk : BSUIR, 2022, pp. 261–272.

[25] C. Acharya, D. Ojha, R. Gokhale, and P. C. Patel,
“Managing information for innovation using knowledge
integration capability: The role of boundary spanning
objects,” International Journal of Information Management,
vol. 62, p. 102438, 2022. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0268401221001316

[26] V. Ivashenko, “Application of an integration platform for onto-
logical model-based problem solving using an unified semantic
knowledge representation,” in Open semantic technologies for
intelligent systems, ser. Iss. 5. Minsk : BSUIR, 2022, pp. 179–
186.

Средства управления многократно
используемыми компонентами

интеллектуальных компьютерных систем
нового поколения

Орлов М. К.
Важнейшим этапом эволюции любой технологии

является переход к компонентному проектированию на
основе постоянно пополняемый библиотеки многократ-
но используемых компонентов. В работе рассматрива-
ется подход к проектированию систем, управляемых
знаниями, ориентированный на использование совме-
стимых многократно используемых компонентов, что
существенно сокращает трудоемкость разработки таких
систем.

Received 13.03.2023

206

http://proc.ostis.net/proc/Proceedings%20OSTIS-2015.pdf
http://proc.ostis.net/proc/Proceedings%20OSTIS-2015.pdf
https://books.google.by/books?id=PzVVAAAAMAAJ
https://doi.org/10.26833/ijeg.413473
https://doi.org/10.1007/978-1-4842-8600-5_3
https://ims.ostis.net
https://www.sciencedirect.com/science/article/pii/S0268401221001316
https://www.sciencedirect.com/science/article/pii/S0268401221001316



