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Abstract—In this paper, authors proposed a neurological
disease recognition technique using gated recurrent unit
neural network and supporting Internet of Things (IoT),
which was checked by taking Alzheimer’s disease (AD)
and Parkinson’s disease (PD) as examples. In this method
first pre-emphasized and denoised the voice data, then seg-
mented the voice signals with a sliding fixed window using
the Hamming window function. Then we were extracted the
eGeMAPSv02 voice features from the window signal, fed
the features into the gated recurrent unit neural network
model for its training, testing and achieve the disease
diagnosis. The results of the study showed that despite
the limited generalization ability of the gated recurrent
unit model, it can still efficiently achieve voice recognition
detection of a portion of neurological diseases. The model is
implemented on the basis of the IoT platform for building
a subsystem of IT diagnostics of patients as part of the
smart city project. The code is stored in https://github.com/
HkThinker/Technology-of-neural-disease-recognition.

Keywords—gated recurrent unite neural network, Inter-
net of things, voice recognition, neurological disease

I. INTRODUCTION

Neurological disease usually result in structural or
functional changes in the nervous system, causing pa-
tients to suffer from perception, thinking, emotion and
behavior, and present a significant challenge to the global
healthcare system. They are a group of diseases that
affect the nervous system and include a variety of dis-
orders such as neurodegenerative diseases, autoimmune
diseases, cerebrovascular diseases, and brain injuries. For
example, PD is a neurodegenerative disease that affects
motion management and is characterized by symptoms
such as hand tremors, limb stiffness, slow movements,
and postural instability. AD is similar and results in
memory loss, cognitive decline, and abnormal language
and behavior. They tend to occur in older age groups,
currently have no complete medical cure, but early diag-
nosis and prompt treatment can alleviate symptoms and
slow progression. Traditional diagnosis of neurological
diseases is usually based on doctors’ clinical experience,
medical history, physical examination and specific tests,
which has limitations and requires a lot of labor and
resources. In recent years, with the rapid development of
artificial intelligence and IoT technologies, neurological

disease identification technologies using neural networks
and supporting IoT are expected to become a new
breakthrough point.

The main purpose of this paper is to investigate the
Gated Recurrent Unit (GRU) neural networks and IoT
technologies to recognition for neurological diseases. To
be specific, our research aims to achieve the following
objectives:

1) To develop a GRU neural network model, which
was trained through a publicly available database
to implement the diagnosis and prediction of PD
and AD.

2) By using IoT technology, we collected patients’
voice data and combined these data with the GRU
neural network model to improve the precision and
accuracy of diagnosis and prediction of neurolog-
ical diseases.

3) To deploy the GRU neural network model to the
Thingspeak IoT platform.

II. RELATED WORK

A. Application of IoT in Neurological Disease Diagnosis

Neurological disease diagnosis systems that are based
on neural network technology and IoT technology have
been widely used.

B. Lu [1] built a practical brain MRI-based AD diag-
nostic classifier using deep learning/transfer learning on
datasets of unprecedented size and diversity. The purpose
of Mukherji [2] was to identify non-invasive, inexpensive
markers and develop neural network models that learn
the relationship between those markers and the future
cognitive state. David Payares-Garcia [3] proposed a
classification technique that incorporates uncertainty and
spatial information for distinguishing between healthy
subjects and patients from four distinct neurodegen-
erative diseases: AD, mild cognitive impairment, PD,
and Multiple Sclerosis. Abbas Sheikhtaheri [4] aimed
to identify and classify the IoT technologies used for
AD dementia as well as the healthcare aspects addressed
by these technologies and the outcomes of the IoT
interventions.
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Researchers had identified the feasibility of integrat-
ing deep learning, cloud, and IoT, Syed Saba Raoof
[5] explained a summary of various techniques utilized
in smart healthcare, i.e., deep learning, cloud-based-
IoT applications in smart healthcare, fog computing in
smart healthcare, and challenges and issues faced by
smart healthcare and it presents a wider scope as it is
not intended for a particular application such aspatient
monitoring, disease detection, and diagnosing and the
technologies used for developing this smarta systems are
outlined. Reyazur Rashid Irshad [6] proposed a novel
healthcare monitoring system that tracks disease pro-
cesses and forecasts diseases based on the available data
obtained from patients in distant communities. Rafael
A Bernardes [7] presented a perspective on integrating
wearable technology and IoT to support telemonitoring
and self-management of people living with PD in their
daily living environment.

B. Classification of Voice Features
Since more than 90 % of PD patients have varying

degrees of dysphonia in the early stages of the disease,
the diagnosis of PD based on voice features has the
merits of being non-invasive and convenient. Darley [8]
first used voice to diagnose aphasia in 1969. Saker et al.
[9] preprocessed the voice data and extracted features,
then applied SVM and KNN classification algorithms to
the feature matrix for classification, eventually obtaining
an average accuracy and a maximum accuracy of 55 %
and 85 %, respectively, which initially confirmed the
feasibility of voice features to classify PD. To further
improve the accuracy of model prediction and simplify
the algorithmic model, scholars have applied different
feature selection algorithms.

III. METHODOLOGY AND DATASETS

A. Pre-emphasis and Denoising of Voice Signals
It is difficult to obtain the high-frequency part of

the unprocessed voice signal because the power of the
voice signal will be significantly attenuated after the
sound gate excitation as well as the influence of mouth
and nose radiation, combined with the smaller energy
corresponding to the high frequency while the larger
energy corresponding to the low frequency in the spec-
trogram of the voice signal. In order to facilitate the
spectrum analysis, this paper adopted a first-order FIR
high-pass digital filter for the pre-emphasis processing
of the voice signal. The purpose of pre-emphasis is to
improve the high-frequency part, so that the spectrum of
the voice signal becomes flat, thus the spectrum can be
obtained with the same signal-to-noise ratio in the whole
frequency band.

Voice denoising is an effective part of signal pre-
processing, mainly to improve the quality of voice and
obtain more pure voice signals. The Fig. 1 shows the
process of voice signal denoising.

Figure 1. Flow chart of voice denoising.

According to the different parts of the noise introduc-
tion, voice noise can be divided into background noise
and transmission noise. In this paper, spectral subtraction
algorithm was used to denoise the voice. The spectral
subtraction algorithm is designed based on the principle
that pure voice is statistically independent of the noise
signals.

B. Framing and Windowing of Voice Signals

The Fourier transform commonly used in voice signal
processing calls for a smooth signal, but the main feature
of the voice signal is the short-time smoothness, i.e.,
the stability of the voice signal in 10–30 ms period.
Therefore, if we want to characterize the voice signal,
it is necessary to analyze the short-time characteristics
of the voice signal, the original signal is framed, and
the frame frequency signal with short-time smoothness
is derived. In the process of frame splitting, the signal
tends to produce spectral deficiencies, so a windowing
process must be performed between frames to keep the
signal at the truncation without distortion. The window-
ing function used in this paper is the Hamming window
function, with window size of 1024, frequency of voice
signal is 44.1khz, and the overlap rate of window is 50
%, hence the voice time of one window is about 23 ms.

C. Feature Extraction of Voice Signals

We used an extended version of GeMAPS (Basic
Affective Parameter Set), eGeMAPSv02 [10], a speech
feature set. It uses acoustic features and spectral-based
features to describe the speech signal, with a total of
88 features. It contains 25 low-level descriptor features,
namely pitch, jitter, gating frequency, gating bandwidth,
gloss, loudness, harmonic-to-noise ratio (HNR), Alpha
ratio, Hammarberg index, spectral slope 0–500 Hz, spec-
tral slope 500–1500 Hz, 3 gating relative energies, 3 rel-
ative energies, 3 harmonic differences, 4 Mel–Frequency
Cepstral Coefficients, 1 spectral flux. 53 other parameters
are derived from these basic parameters.

D. 6–layer Gated Recurrent Unit Model

In the paper, a multi-layer GRU model is constructed
for voice data recognition. two mechanisms, an update
gate and a reset gate, are included in the GRU module.
The internal equation of a single GRU model is :
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rt = σ(Wr × [ht−1, xt]) (1)

zt = σ(Wz × [ht−1, xt]) (2)

h̃t = tanh(Wh̃ × [rt × ht−1, xt]) (3)

ht = (1− zt)× ht−1 + zt × h̃t (4)

yt = σ(Wσ × ht) (5)

Where σ represents sigmod function, zt is the update
gate of the unit, sigmod function converges the value
of the update gate to 0 or 1, i.e., whether the value of
the previous step is remembered or discarded. rt is the
reset gate, the smaller rt, the more information about
the previous state needs to be ignored, W is the weight
value, ht and h̃t are the output and temporary hidden
states in the module.

The GRU model has a lower computational cost with
faster training, so the model is extensively used in various
fields of deep learning. The structure of a single GRU
module is shown in Fig. 2.

Figure 2. Structure of a single GRU model.

The GRU neural network in this work had a total of 6
layers and 1700 learnable properties. Table III illustrated
the structure of the GRU neural network.

Table I
THE STRUCTURE OF GRU NEURAL NETWORKS

Name Activations Learnable Properties
Sequence Input 88(C)× 1(B)× 1(T )

InputWeights 18× 88
GRU 6(C)× 1(B) RecurrentWeights 18× 6

Bias 18× 1
ReLU 6(C)× 1(B)
Fully 2(C)× 1(B) Weights 2× 6

Connected Bias 2× 1
Softmax 2(C)× 1(B)

Classification Output 2(C)× 1(B)

E. Public Voice Datasets Used

This paper used public datasets [11] collected from
188 PD patients (107 men, 81 women) aged 33–87
at Istanbul University. The control group includes 64
healthy individuals (23 men, 41 women) aged 41–82.

Participants were asked to sustainably pronounce the
vowel /a/ while a microphone set at 44.1 KHz recorded
their voice three times.

DementiaBank [12] is a resource that collects voice,
video, and text data from older adults and patients with
AD. It contains two groups of participants; the elderly
group includes 60 healthy older adults from New York
City who ranged in age from 60 to 91 years, while
the AD group includes 64 patients from Pittsburgh who
ranged in age from 60 to 95 years. Each participant was
asked to answer a series of questions. Data were collected
using a specialized recording device, with recorded voice
data at a sampling rate of 44.1 kHz.

Visualization of voice can help to extract feature
information. The voice waveform and spectrum of AD
are shown in Fig. 3.

Figure 3. Alzheimer data voice waveforms and spectrograms.

F. Training and Testing Process

After noise removal and signal segmentation of all the
voice data in the dataset, we extracted 88 voice signal
features for each voice window signal, and then created
a neural network for training and learning. In this paper,
a 6-layer GRU model was adopted. It’s model structure
is shown in Fig. 4.

Figure 4. Structure of 6-layer GRU model.

To avoid overfitting, we added a Relu layer after the
GRU layer and output the probability of class labels by
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defining a Softmax layer to vectorize the labels onte-
hot before calculating the correctness. To accelerate the
model convergence, the training took a batch gradient
descent approach for weight update, and each batch
contained 64 features. A flow chart of the overall model
structure of the experiment is shown in Fig. 5.

Figure 5. Flow chart of the overall model structure of the experiment

G. Deploying the Model to the Thingspeak Platform

Thingspeak is an open source IoT application platform
that allows users to conveniently collect, process and
analyze data from IoT devices. The platform provides
a way for developers and manufacturers to collect, store,
analyze and visualize data from the center of IoT devices
and use that data for real-time decision-making and
operations.

To upload the sensor data from the mobile phone to the
Thingspeak IoT platform and read the results of the data
analysis using an application developed by ourselves, we
followed the following steps:

1) Registering a Thingspeak account and creating new
channel.

2) Getting our channel write/read API Key, which we
can find in our Thingspeak account.

3) Adding network authority and sensor permission
in our application.

4) Adding the Thingspeak API library, we can get
the source code of the library from the Thingspeak
website.

5) Implementing the code to upload data in our ap-
plication, the code should use HTTP protocol to
upload our sensor data to our Thingspeak channel,
providing the channel write API Key to authenti-
cate our identity.

6) After uploaded data, we can analyze the data
using Thingspeak’s analytics tool. Once we have
uploaded the data, we could use Thingspeak’s
analytics tool to analyze the data. To get the result
of data analysis by using HTTP GET request.

7) Implementing the code to read the analysis results
in our application. We need to get data analysis
results using HTTP GET request and read API key
to parse the results into JSON format so that we
can process and display the data in our application.

In summary, to upload the sensor data from the phone
to the Thingspeak IoT platform and read the data analysis

results, we need to register an account and create a
new channel, get the channel write/read API Key, add
network permissions and sensor permissions, add the
Thingspeak API library, implement the code to upload
the data, use the platform’s analysis tool to analyze the
data, implement the code to read the analysis results, and
parse the results into JSON format to process as well as
display the data in the application.

Deployment of the GRU model to the Thingspeak IoT
platform for data analysis Data analysis on Thingspeak
using the GRU model involves the following steps:

1) Creating a new channel on Thingspeak to store
the data to be analyzed. We can use Thingspeak’s
REST API or MQTT API to add the sensor data
to the channel.

2) Training a GRU model on our local computer and
exporting the model to a format that can be used
on.

3) Uploading the exported KNN model to the Things-
peak platform. We can use Thingspeak’s REST
API or MQTT API to upload the model to the
channel.

4) Once the model is uploaded successfully, we can
use Thingspeak’s MATLAB analysis toolbox or
matlab scripts to load the model and classify the
uploaded data. In MATLAB, we can read the
uploaded data using the thingSpeakRead function,
load the GRU model using the load function, and
classify the data using the predict function.

5) Displaying the classification results on the user
interface of Thingspeak or sending the results to
our cell phone as well as to an email for easy
viewing of the identification results.

IV. EXPERIMENTS AND RESULTS

A. Experimental Setup

In this paper, the feature datasets were divided into
training datasets and test datasets in the ratio of 9:1.
The training datasets were trained and validated using
the 5-fold cross-validation method, which was repeated
five times. The test datasets were then used to test the
final results. And We evaluated the experiment using the
confusion matrix [13].

The Table II showed the GRU neural network model
hyperparameter setting table in this experiment.

B. Experiment Results and Evaluation

The Fig. 6 showed the process of training the GRU
model in 1000 epochs based on the Parkinson’s public
voice datasets.

As seen in the Fig. 6, the GRU neural network
model based on the Parkinson’s public voice dataset
can converge substantially in a short time. The model
uses stochastic gradient descent and variable learning rate
in solving the minimization loss function, so there was
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Table II
GRU NEURAL NETWORK MODEL HYPERPARAMETER SETTING

Number Parameter Name Parameter Value
1 Mini Batch Size 64
2 Max Epochs 1000
3 Initial Learn Rate 0.01
4 Learn Rate Drop Factor 0.1
5 Learn Rate Drop Period 700
6 Shuffle every-epoch
7 optimization adam

Figure 6. The process of training the GRU model based on Parkinson’s
datasets in 1000 epochs.

some jitter in the convergence process of the model, but
the general trend of the model accuracy was improved,
the loss function of the model corresponded to a de-
creasing trend. The final training accuracy of the model
reached 100 %.

Figure 7. a - confusion matrix of training datasets; b - confusion matrix
of testing datasets; c - prediction results for the training datasets; d -
prediction results for the testing datasets.

As can be seen from Fig. 7, the accuracy of the model
on the test set was 86.66 %, while the accuracy on the
training set was much better than the accuracy on the test
set, the model may have been overfitted. The overfitting
phenomenon may arise because of the small amount of
data in the public voice dataset of Parkinson’s, coupled

with the uneven distribution of samples in this public
dataset, so the model’s performance was degraded.

Figure 8. The process of training the GRU model based on Alzheimer’s
datasets in 1000 epochs.

As can be seen in Fig. 8, the model converged after the
Alzheimer’s voice training dataset was fed into the model
and entered 2000 training cycles. The Fig. 9 showed a
comparison of the prediction results and the confusion
matrix of the training and testing datasets for AD.

Figure 9. a - confusion matrix of testing datasets; b - confusion matrix
of training datasets.

Table III showed the experimental results of PD recog-
nition and AD using GRU based on the test datasets.

Table III
THE EXPERIMENTAL RESULTS OF PD RECOGNITION AND AD

USING GRU BASED ON THE TEST DATASETS

Public Average Average Average Test
Datasets Precision Sensitivity F1 score Accuracy

Parkinson’s 84.95 % 83.10 % 84.01 % 86.66 %
Alzheimer’s 67.60 % 67.50 % 67.55 % 68.27 %

In summary, the accuracy of the GRU-based PD model
could reach 86.67 % on the test dataset and 100 %
on the training dataset. On the testing datasets, the
average precision was 84.95 %, the average sensitivity
was 83.10 %, and the average F1 score was 84.01 %.
This experimental result showed that the recognition of
PD using GRU algorithm based on freezing of gait data
was effective.

However, the test results of the model on Alzheimer’s
data were not satisfactory, which may be due to the fact
that Alzheimer’s data were more complex and harder to
find feature points compared to Parkinson’s data, after
which we will try new models or improve the model in a
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way to increase the accuracy. The model is implemented
on the basis of the IoT platform for building a subsystem
of IT diagnostics of patients as part of the smart city
project using elements of OSTIS technology [14].

V. CONCLUSION

The aim of this paper was to explore the performance
of GRU neural networks in voice recognition tasks within
neurological diseases. We used a 6-layer GRU model that
was trained and tested on the Parkinson’s public voice
dataset and the Alzheimer’s public voice dataset. With
the experimental results, we found that.

1) On the Parkinson’s public voice dataset, our model
can achieve 86.66 % accuracy, which has bet-
ter performance than traditional machine learning
methods. However, the accuracy on the Alzheimer
public voice dataset was only 68.27 %, indicating
that the 6-layer GRU model does not have good
generalization ability.

2) During the training of the model, we noticed that
the training error of the model was gradually
decreasing with the increase of training times, but
the testing error started to increase. This indicated
that the model appeared overfitting phenomenon.

3) We also explored our scheme to implement the
GRU model on the IoT. The scheme has potential
for practical applications and provides a reference
for research in related fields.

Summing up, our experimental results showed that the
GRU model can be deployed on IoT platforms to solve
part of the problem of IT diagnostics of neurological
disorders by recognizing changes in patients’ speech.
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Технология распознавания
нейрологических заболеваний с
использованием нейронной сети
закрытого рекуррентного блока и

интернета вещей
Вишняков В. А., Ивей С., Чуюэ Ю.

В этой статье авторы предложили метод распознавания
неврологических заболеваний с использованием закрытой
рекуррентной нейронной сети и поддержкиИнтернета вещей
(IoT), который был проверен на примере болезни Альцгейме-
ра (БА) и болезни Паркинсона (БП). В этом методе сначала
предварительно выделяются и ослабляются голосовые дан-
ные, затем голосовые сигналы сегментируются с помощью
скользящего фиксированного окна с использованием функ-
ции окна Хэмминга. Затем извлекаются голосовые характе-
ристики eGeMAPSv02 из сигнала окна, вводятся эти харак-
теристики в модель нейронной сети с закрытым рекуррент-
ным модулем для ее обучения, тестирования и достижения
диагноза заболевания. Результаты исследования показали,
что, несмотря на ограниченную способность модели gated
recurrent unit к обобщению, онаможет эффективно обеспечи-
вать распознавание голоса при выявлении части неврологи-
ческих заболеваний. Модель реализуется на базе платформы
IoT для построения подсистемы ИТ-диагностики пациентов
а рамках проекта умного города. Код хранится https://github.
com/HkThinker/Technology-of-neural-disease-recognition.

Ключевые слова—нейронная сеть с закрытым рекуррент-
ным модулем, сеть Интернета вещей, распознавание голоса,
неврологические заболевания.

Термины индекса — закрытая рекуррентная нейронная
сеть, Интернет вещей, распознавание голоса, неврологиче-
ские заболевания.
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