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Abstract—Hand gesture Recognition is an important task
and can be used in a lot of applications. In intelligent
systems, hand gesture recognition can be used to access
information through a video interface. In recent years,
skeleton-based hand gesture recognition become a popular
research topic. The existing methods have the low dis-
criminative power due to sensitivity of features to image
noise. We have proposed new methods to decrease the
influence of the noise to extract hand image features. The
objective of the research is to improve the hand gesture
classification accuracy. A hand gesture recognition method
based on skeleton image properties is developed. For 5
classes recognition, this approach allows us to increase the
classification accuracy on test set from 0.4% till 20.4%
as compared with existing well-known methods.For 10
classes recognition, this approach allows us to increase the
classification accuracy from 5% till 18% as compared with
existing well-known methods.

Keywords—Color images, Skeleton images, hand gesture
feature, Machine Learning, Classification Accuracy

I. INTRODUCTION

Hand gesture recognition is widely used in many ap-
plications such as sign language recognition [1], clinical
and health [2], and robot control [3]. Open semantic
technologies provide the ability to access the knowledge
base of an intelligent system using a video interface. The
inclusion of a hand gesture recognition system in the
video interface makes it easier to enter commands and
data into an intelligent system.

There are two existing practical approaches to rec-
ognizing hand gestures [4]. The first approach is based
on data gloves (wearable or direct contact) [5], [6], and
the second is based on computer vision, which does not
require special sensors except cameras [7]. Moreover,
vision-based methods can provide contactless commu-
nication between humans and computers. Therefore they
are considered ordinary, suitable approaches.

As one of the types of camera vision-based approaches
[4], skeleton-based approaches are attracting much atten-
tion in recent years since the skeleton feature describes
geometric attributes and constraints and easily translates
features and data correlations [8]. The skeleton-based
approaches can further be classified as RGB-based [9]
and RGB-D-based [10]- [12] approaches according to
the different ways of obtaining the skeletal images. The

RGB-D-based approaches adopt the depth sensor of the
Kinect camera to obtain the skeletal image. One of the
merits of these methods is that the lighting, shade, and
color did not affect the obtained skeletal image. However,
the depth camera’s cost, size, and availability will limit
their use. On the contrary, RGB-based approaches only
require standard cameras. However, it must first convert
the RGB images into grayscale images and then follow
binarization and skeletonization to extract the skeletons.
The skeletons extracted by this kind of method may
include many useless skeletal branches or skeletal rings
that are caused by the noise. The noise problem will be
evident when the contrast of the input image is low. Since
the existence of the noise, the accuracy of hand gesture
recognition using RGB skeleton-based approaches are
not satisfying. However, it would be a promising method
if the effect of the noise could be reduced.

In the past several decades, many denoise methods
have been proposed to alleviate the effects of noise on the
skeletonization algorithm and produce stable skeletons
as much as possible. These methods can be concluded
into three different types, which are skeletonization-
based denoising approaches [13]- [16], pruning-based
denoising approaches [17]- [19], and scale-space-based
denoising approaches [20], [21].

In this paper, a hand gesture recognition system based
on skeleton image properties is developed, in which
skeleton images are extracted by using different com-
binations of the skeletonization and denoising method.
The objective of the research is to improve hand gesture
classification accuracy.

II. RELATED METHODS

In this section, some skeletonization and denoising
methods used in our hand gesture recognition system
are introduced. There are five skeletonization methods
implemented, two of which are classical skeletonization
methods and others proposed by us. In addition, a post-
pruning method and a space-based denoising approach
are also deployed in this system.

A. Image Skeletonization Method

OPTA algorithm [22] is a classical parallel skele-
tonization method proposed by Roland T. Chin et al. This
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Figure 1. General block-scheme of the hand gesture reognition.

algorithm uses eight 3× 3 thinning templates to remove
the pixels. In addition, two other restoring templates are
applied to address the breakage and disappearance of
horizontal and vertical limbs with double-pixel widths.
The drawback of this algorithm is that it is susceptible
to noise.

ZS algorithm [23] is another classical parallel skele-
tonization method, which is one of the most popular
methods since it can offset the influence of the noise
to some extent by breaking one iteration in OPCA
into two sub-iterations. Therefore, the computation speed
of the ZS method is slower than OPTA. In addition,
the ZS algorithm has some potential problems, such
as sometimes it may suffer the problem of excessive
erosion, and it fails to maintain one-pixel width, which
may increase the difficulty when applied to recognition
tasks.

Based on these two classical methods, we have pro-
posed three new skeletonization methods: OPCA, ZSM,
and OPTA.

OPCA [24] is a denoising version of the OPTA al-
gorithm by modifying some deletion conditions. It is
more robust than the OPTA method and, at the same
time, shares a similar computation speed with the OPTA
method. In addition, it can achieve a single-pixel width.
However, it is more sensitive to the noise than the ZS
algorithm.

ZSM [25] is an improved version of the ZS algorithm,
in which the drawbacks of excessive erosion are over-
comed and it can achieve single pixel width by adopting
extra five thinning templates. The denoise ability of this
algorithm is similar to the ZS algorithm. However, this
method is still a sub-iterative method as the ZS algorithm.

MOPCA [26] is the improved version of the OPCA,
in which there is a total of 13 templates are used to
enhance the robustness of the algorithm to the noise.
This method combines the merits of ZS algorithms and
OPTA algorithms. It is insensitive to noise as the ZS and
as fast as the OPTA method.

B. Post-pruning and Scale-Space based Denoiseing
Method

Using denoise-skeletonization can only partly offset
the influence of the noise. Therefore, it is necessary to
use other denoising techniques to further improve the
noise-against ability. As a result, we also proposed a new
post-pruning method and a new scale-space denoising
method.

The post-pruning method proposed by us is named
DCEM [27], modified from the famous pruning algo-
rithm of DCE [28]. One of the limitations of the DCE
is that it requires manual tuning of the parameter of
the pruning power’s strength. In DCEM, conducting this
tedious work is unnecessary, making it more convenient
in many applications.

Our proposed scale-space denoising method is ATFM
[29], derived from the ATF [30] method. The core idea of
the ATF method is first to extract skeletons from different
smoothed images that are filtered by using different
scale-space filters to the original image. Then, they used
their proposed sensitive measure to evaluate these skele-
tons, from which the skeleton with the lowest score is
considered stable. However, their method sometimes may
suffered the problem of the deformation of the skeleton.
To overcome this problem, we proposed our ATFM
method. In our method, the significant modification on
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the sensitive measure, in which more information is
included.

III. PROPOSED HAND GESTURE RECOGNITION
METHOD

The general block scheme of hand gesture recognition
includes the following components, which are static hand
gesture dataset, binary and skeleton image formation,
feature labeling and extraction, classifier models, and
performance evaluation. This general blcok-scheme is
presented in Fig. 1, all major components are marked
with green color.

Static hand gesture images are stored in the images
dataset. They are used to train the classifier and evaluate
the accuracy of the classification task. These RGB im-
ages of hand gestures are first passed into a block that
can form the binary and skeleton images from them. All
the proposed skeletonization and denoise methods are
embedded in this block.

Next, feature extraction is conducted based on these
obtained binary and skeleton images. For each pair of
binary image and skeletal image, there are nine geometry
features should be extracted, and they together compose
a feature vector. Next, manual labeling for each pair of
binary and skeleton images is also required to get the
truth labels that corresponding to each feature vector.
These feature vector can passed to the trained classifier
for prediction. By comparing the predicted label and the
truth label to compute the accuracy. In the classification
module, there are six different well-known classifiers
for optional, which includes decision tree(DT) [31], k-
nearest neighbors (KNN) [32], naïve Bayes (NB) [33],
support vector machine (SVM) [34], ensemble learning
(EL) [35], multilayer perceptron (MLP) [36].

A. Creation of the Hand Gesture Dataset

All static hand gesture images that in dataset are
captured with the iPhone 11. The resolution of images are
3024× 3024× 3. Since directly processing these images
is time-consuming, resize operation is used to converting
these images into 95×95×3 images. The dataset consists
of ten different classes, example pictures are shown in
Fig. 2.

In each one class, there are more than 100 different
images. As a result, the total amount of our dataset is
over 1000 images. These images are randomly divided
into train-validation group and testing group. The number
of images in testing group is equal to 20% of the initial
image set, and the number of images in train-validation
group is 80% of the initial image set.

B. Forming Binary Image and Skeleton Image using Hy-
brid Combining Denoising Techniques and Skeletoniza-
tion Methods

The skeleton and pattern images are extracted from
the original images by using different combinations of

(a) Class 1 (b) Class 2

(c) Class 3 (d) Class 4

(e) Class 5 (f) Class 6

(g) Class 7 (h) Class 8

(i) Class 9 (j) Class 10

Figure 2. Example of the Ten Class of Hand Gestures.

skeletonization method and denoise methods . There are
six hybrid methods are used, which including ZS+ATFM,
OPTA+ATFM, OPCA+ATFM, ZSM+ATFM,
MOPCA+ATFM, and MOPCA+ATFM+DCEM. The
time consumption of these methods is listed in Tab. I.

From Tab. I, it is noted that ZS+ATFM,
OPTA+ATFM, ZSM+ATFM, MOPCA+ATFM, and
MOPCA+ATFM+DCEM respectively spend more 38%,
22%, 33%, 0.4%, and 5% time when compared with the
method of OPTA+ATFM. Besides, we can learned the
use of DCEM may take extra 0.02 seconds.

In Fig. 3, we listed example skeletons extracted from
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Table I
TIME CONSUMPTION OF SIX METHODS

Skeleton Image Average Time of
Extract algorithm skeleton process (s)

ZS+ATFM 0.704
OPTA+ATFM 0.624
OPCA+ATFM 0.510
ZSM+ATFM 0.682

MOPCA+ATFM 0.512
MOPCA+ATFM+DCEM 0.536

the images that are shown in Fig 2 by using the skele-
tonization method MOPCA with both ATFM and DCEM.

(a) Class 1 (b) Class 2

(c) Class 3 (d) Class 4

(e) Class 5 (f) Class 6

(g) Class 7 (h) Class 8

(i) Class 9 (j) Class 10

Figure 3. Skeleton examples of ten hand gesture classes.

C. Feature extraction based on Skeleton and Binary
Images

After a skeletal image and its pattern image are ob-
tained from an input image, it is necessary to transform
the skeletal images along with its pattern image to a
9-dimension feature vector used in the later classifi-
cation. This 9-dimension vector includes the following
significant geometrical features: the number of endpoints
(NEP); the number of cross points (NCP); the existence
of the inner hole (EIH); the average virtual-real distance
rate between each pair of endpoints (AVRD); the number
of virtual cross points (NVCP); Rate of the deviation
of the thick of the endpoints (RDTE); Average distance
between the thickest point in a pattern image and each
endpoint in the skeletal image(ADTPE); distance be-
tween pattern thickest point and skeletal thickest point
(DPSP); average angle of the endpoint (AAEP). Each
dimension of this feature vector is manually selected with
respect to the topology of these different classes.

The NEP is obtained by summarizing the number of
these foreground pixels, which have only one neighbor
foreground pixel in its 8-neighborhood window in the
skeletal image.

The NCP is obtained by summarizing the number
of these foreground pixels, which have more than two
neighbor foreground pixels in its 8-neighborhood win-
dow in the skeletal image.

The EIH is an important geometry feature with only
two values, 0 or 1. The inner hole denotes that the hole
should be enclosed by the skeleton. Ideally, only Class 7
and Class 10 have the inner hole. One method to judge
the existence of the inner hole for these hand images is
to compute the number of closed areas in the skeleton
image.

The AVRD describes the similarity of the real connect-
ing line between endpoints to the virtual closet straight
line between them. For each pair of endpoints, the real
connecting line and its distance can be obtained using
breadth-first search (BFS) algorithms, and the distance of
the virtual line is calculated using the Euclidean distance
formula. Then the average value is easily obtained.

The NVCP is obtained by summarizing the total
number of points at the intersection of the virtual line
and the real line.

Before presenting the definition of RDTE, ADTPE,
and DPSP, the concept of thickness is first introduced.
The thickness of a pixel is defined by the distance
between this pixel and its closest pixel located on the
boundary in the pattern image. Boundary pixels comprise
the foreground pixel, whose four neighbors have at least
one background pixel.

For a given skeleton with n endpoints, all endpoints
can form a set SEP , in which the i-th endpoint is denoted
as SEPi

. The thickness of SEPi
can be denoted as TEPi

.
The set formed by all TEPi

is denoted as TSEP
. Then,
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Figure 4. Classification Models and Performance Evaluation.

the RDTE for this skeleton can be computed by using
the following formula:

RDTE =

{
0 n ≤ 1∑n

i=1

√
(TEPi

− 1
n

∑n
i=1 TEPi

)2

max(TSEP
)−min(TSEP

) n > 1
(1)

We suppose the coordinates of the thickest pixel in the
pattern image are Px and Py , and its thickness is Tp. We
suppose that in a skeletal image, there are n endpoints.
The coordinates of the i-th endpoint are denoted as EPix

and EPiy . Then, the ADTPE can be calculated by using
the following formula:

ADTPE =

{
0 n = 0∑n

i=1

√
(Px−EPix )

2+(Py−EPiy )
2

nTp
n > 0

(2)
Supposing the coordinate of the thickest pixel in the

pattern image is Px and Py , and the coordinate of
the thickest pixel in the skeletal image is Sx and Sy ,
the DPSP can be calculated according to the following
formula:

DPSP =
√

(Px − Sx)2 + (Py − Sy)2 (3)

Before obtaining the value of the AAEP, the main
axis is defined by the thickest point in the pattern image
and the farthest endpoint in the skeletal image from that
point. Based on that, it is easy to calculate the relative
angle of the remaining endpoint to these axes, and the

AAEP is the mean of these angles. If the number of
endpoints is less than 2, the AAEP is set as 0.

D. Classifier Models and Performance Evaluation

The obtained feature vectors of the images from the
training set of the dataset and their labels are passed to
classifiers metioned, then conduct the learning process.
The hyperparameter of these classifiers is listed in Tab.
II.

Then, the classifier’s learning result are evaluated by
considering the accuracy of these classifiers on the test
set.

Here, our aim is to explore the relationship between
the accuracy of the classifiers and the different skeleton
extracted by different methods, the relationship between
the accuracy of the classifiers, and the difference in the
feature selection. In addition, we also study the difference
between distinct classifiers and their performance under
a different number of classes. The general block diagram
is shown in Fig. 4.

There are many criteria to evaluate the classifier’s
performance, such as accuracy, F1, precision, recall, roc,
and so on. Here, we only take accuracy as the evaluation
criteria for simplification. The formula of accuracy is
described in the following:

Accuracy =
1

m

m∑
i=1

I(xi, yi) (4)

I(xi, yi) =

{
1 f(xi) = yi

0 f(xi) ̸= yi
(5)

251



Table II
HYPERPARAMETER OF DIFFERENT CLASSIFIERS

Classifier Hyperparameter Setting

DT Maximum number of splits 100
Split criterion Gini

KNN
Number of neighbors 1

Distance metric Euclidean
Distance weight Equal

NB Kernal type Gaussian

SVM
Kernal function Quadratic

Box constraint level 1
Kernel scale mode Auto

EL

Ensemble Method Bagged Trees
Learning type Decision Tree

Maximum number of splits 99
Number of learners 30

Learning rate 0.1
Subspace dimension 1

MLP

Number of fully connected layers 1
Layer size 25
Activation Relu

Iteration limit 1000

Where m is the number of the pair of feature vectors
x and its corresponding true label y. f(x) is predicted
label for feature vector x.

IV. EXPERIMENTAL RESULTS

Two separate experiments are conducted for the pur-
pose of evaluating the performance of the proposed
recognition method. In the first experiment, the recogni-
tion experiment is conducted on five hand gesture classes,
which include Class 1 to Class 5. Whereas in the second
experiment, the recognition experiment is conducted on
all ten hand gesture classes.

A. Performance evaluation of static hand gesture Clas-
sification for five classes

In order to explore the influence of the features on
the classification task for five classes, an experiment of
the feature selection has been conducted based on the
classifiers of KNN and SVM, in which we removed one
feature from the feature vector and conducted the classi-
fication task by using remaining features. Experimental
results are shown in Tab. III.

From Table III, it is clear that the deletion of the NEP
or the deletion of NCP may decrease the accuracy of the
classification result in both KNN and SVM. Deleting the
NVCP, ADTPE, and AAEP may improve the accuracy
of the KNN classification, whereas deleting them may
not change the performance of the SVM classification.
The reason for that is the KNN classifier used in our
experiment only considers the closest neighbors.

Next, the influence of the different skeleton extractions
on the accuracy of all six classifiers is also studied. The
results are shown in Tab. IV and Tab. V.

From Tab. IV and Tab. V, it is obvious that skele-
tonization methods can affect the accuracy of the clas-
sification. Among the methods with ATFM denoise

Table III
CLASSIFICATION ACCURACY COMPARISON FOR 8 AND 9 FEATURES

AND 5 CLASSES

Feature Deleted
Classification Accuracy

Train/Validation Set Test Set
KNN SVM KNN SVM

NEP 92.30% 97.00% 88.80% 97.80%
NCP 93.80% 97.90% 90.30% 98.50%
EIH 94.80% 97.60% 94.00% 99.30%

AVRD 94.40% 97.20% 94.00% 99.30%
RDTE 95.30% 97.90% 92.50% 99.30%
NVCP 96.40% 97.80% 96.30% 99.30%

ADTPE 95.90% 97.40% 97.00% 99.30%
DPSP 94.40% 97.40% 97.00% 99.30%
AAEP 94.60% 97.40% 94.80% 99.30%

Full Features 94.40% 97.80% 94.00% 99.30%

operation, the proposed three skeletonization methods:
ZSM, OPCA, and MOPCA, have higher accuracy of
classification over ZS and OPTA in all six classifiers,
in which the MOPCA has the highest average accuracy,
which is 96.15% and 97.17% on the validation set and
testing set respectively.

In addition, the denoising methods influence the per-
formance of classification. For example, we can see that
the average accuracy of MOPCA with ATFM+DCEM is
96.67% and 97.55% on the validation and testing sets,
respectively, which is 2% higher than that of MOPCA
with ATFM.

From the perspective of the classifiers, the decision
tree and ensemble learning are the top two best classifiers
in the task of five classes classification on all skeletons
extracted by different methods, which have up to 98.5%
and up to 98.3% accuracy on the validation set, respec-
tively. For the testing set, both have up to 100% accuracy
of classification. In contrast, the naïve Bayes has the
worst performance in terms of accuracy, which has only
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Table IV
CLASSIFICATION ACCURACY EVALUATION ON TRAIN/VALIDATION SET THAT HAS 5 DIFFERENT CLASSES

Classifier ZS+ OPTA+ ZSM+ OPCA+ MOPCA+ MOPCA+ATFM
Models ATFM ATFM ATFM ATFM ATFM +DCEM

DT 88.4% 82.4% 93.0% 92.9% 97.4% 98.5%
NB 73.6% 73.8% 87.3% 87.5% 96.6% 95.7%

SVM 86.2% 78.5% 93.1% 87.3% 96.8% 97.8%
KNN 81.5% 71.8% 87.9% 83.6% 93.2% 94.4%
EL 90.7% 83.7% 95.5% 94.6% 97.3% 98.3%

MLP 85.4% 74.0% 88.4% 83.0% 95.6% 96.3%
Mean 84.3% 77.3% 90.8% 86.8% 96.1% 96.6%

Table V
CLASSIFICATION ACCURACY EVALUATION ON TEST SET THAT HAS 5 DIFFERENT CLASSES

Classifier ZS+ OPTA+ ZSM+ OPCA+ MOPCA+ MOPCA+ATFM
Models ATFM ATFM ATFM ATFM ATFM +DCEM

DT 85.8% 82.1% 93.3% 94.0% 96.3% 100.0%
NB 79.9% 75.4% 86.6% 82.8% 95.8% 94.0%

SVM 90.3% 78.4% 91.8% 86.6% 97.0% 99.3%
KNN 85.1% 75.4% 86.6% 82.8% 97.8% 94.0%
EL 90.3% 82.8% 93.3% 94.0% 98.3% 100.0%

MLP 85.1% 68.7% 82.8% 88.1% 97.8% 98.0%
Mean 86.0% 77.1% 89.0% 88.0% 97.1% 97.5%

95.7% in the validation set and 94.00% in the testing
set. Regarding training time, when skeletonization is set
as MOPCA+ATFM+DCEM, the average time consumed
by the decision tree is about 0.6s, which is faster than
ensemble learning, which consumes about 4.2s. In Fig.
5, training Time consumed by different classifiers in 5
classes is presented.

For five classes classification task, the best combina-
tion method is using MOPCA skeletonization to extract
the skeleton, using ATFM and DCEM to offset the
noise’s influence, and selecting decision tree to predict
the class of the static hand gesture. The overall accuracy
can reach 98.5%, and the train time is 0.6435s.

B. Performance evaluation of static hand gesture Clas-
sification for 10 classes

Similar to the previous section, the experiment of
the feature selection has been conducted based on the
classifiers of KNN and SVM once more. The only
difference is that the current experiment considered more
classes, which increased from 5 to 10. Experimental
results of the feature selection are shown in Tab. VI.

By comparing Tab. VI and Tab. III, it is notable
that the overall accuracy of classification is significantly
reduced with the increasing number of classes since there
are more complicated hand gestures are considered. In
addition, the importance of each feature is also altered.
For example, in Tab. III, we knew that the deletion of the
NEP and NCP might significantly worsen the accuracy;
however, in Tab. VI, the degree of the influence caused
by them is much slightly when compared with the feature
of AAEP. On the other hand, removing the NVCP and

Table VI
CLASSIFICATION ACCURACY COMPARISON FOR 8 AND 9 FEATURES

AND 10 CLASSES

Feature Deleted
Classification Accuracy

Train/Validation Set Test Set
KNN SVM KNN SVM

NEP 81.30% 79.70% 84.00% 80.60%
NCP 81.80% 81.10% 84.80% 81.00%
EIH 82.60% 81.50% 84.40% 81.60%

AVRD 82.50% 80.50% 84.40% 79.70%
RDTE 84.50% 80.90% 85.70% 82.70%
NVCP 84.40% 80.90% 88.20% 82.70%

ADTPE 82.50% 78.70% 83.10% 79.30%
DPSP 83.80% 81.20% 85.20% 81.90%
AAEP 73.20% 74.40% 73.40% 78.10%

Full Features 82.70% 81.60% 84.40% 81.00%

RDTE may increase the classification accuracy on both
KNN and SVM.

Similar to the previous section, the influence of the
different skeletonization methods and the different clas-
sifiers on the accuracy are explored in static hand gesture
classification. The accuracy of 10 classes on the valida-
tion and testing sets are presented in Tab. VII and Tab.
VIII, respectively. Training time consumed by different
classifiers on ten classes is shown in Fig. 6.

From Tab. VII and Tab. VIII, we can see that the
average accuracy of classification based on skeletons ex-
tracted by distinct methods are all decreased to some ex-
tent when comparing with the results in Tab. IV and Tab.
V. However, the MOPCA+DCEM+ATFM method still
outperforms other methods. For example, for classifying
ten types of static hand gesture tasks, the average ac-
curacy of classification of the MOPCA+DCEM+ATFM
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Figure 5. Training Time Consumed by 6 Classifiers on 5 classes dataset.

Table VII
CLASSIFICATION ACCURACY EVALUATION ON TRAIN/VALIDATION SET THAT HAS 10 DIFFERENT CLASSES

Classifier ZS+ OPTA+ ZSM+ OPCA+ MOPCA+ MOPCA+ATFM
Models ATFM ATFM ATFM ATFM ATFM +DCEM

DT 76.5% 70.6% 84.4% 83.3% 86.7% 91.1%
NB 62.1% 61.8% 82.0% 76.1% 77.4% 82.9%

SVM 74.1% 59.5% 79.2% 77.4% 80.4% 81.6%
KNN 74.2% 63.9% 76.7% 75.5% 83.8% 82.7%
EL 80.9% 76.7% 88.7% 88.3% 90.0% 92.9%

MLP 73.4% 59.1% 74.9% 73.0% 82.6% 82.3%
Mean 73.5% 65.2% 80.9% 78.9% 83.4% 85.5%

Table VIII
CLASSIFICATION ACCURACY EVALUATION ON TEST SET THAT HAS 10 DIFFERENT CLASSES

Classifier ZS+ OPTA+ ZSM+ OPCA+ MOPCA+ MOPCA+ATFM
Models ATFM ATFM ATFM ATFM ATFM +DCEM

DT 75.9% 73.8% 82.7% 87.3% 86.1% 91.1%
NB 59.5% 62.0% 86.5% 81.4% 80.2% 77.2%

SVM 73.8% 62.4% 77.6% 75.5% 82.3% 81.0%
KNN 69.6% 63.7% 78.9% 75.9% 87.8% 84.4%
EL 81.4% 79.3% 89.0% 91.6% 87.8% 92.8%

MLP 70.5% 60.8% 79.7% 76.8% 83.1% 83.5%
Mean 71.7% 67.0% 82.4% 81.4% 84.5% 85.0%

Figure 6. Training Time Consumed by 6 Classifiers on 10 classes dataset.
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method can reach 85.58% on the validation set and
85.00% on the testing set. On the other hand, the
average accuracy of classification on skeletons extracted
by ZSM and OPCA is higher than the average accuracy
of classification on skeletons extracted by ZS and OPTA.

In addition, from the perspective of the classi-
fiers, the accuracy of the classification of the de-
cision tree and ensemble learning surpassed all the
other classifiers. Based on the skeleton extracted by
the MOPCA+DCEM+ATFM method, the decision tree
and ensemble learning classifier can obtain 91.10% and
92.80% accuracy on the testing set, respectively. In
contrast, the classification accuracy of other classifiers
can only achieve about 85%. Although the ensemble
learning classifier has a slight bit advantage over the
decision tree regarding classification accuracy, the time
spent on training the ensemble learning is much more
than the decision tree.

In a word, for ten classes classification task, the best
combination method is using MOPCA skeletonization to
extract the skeleton, using ATFM and DCEM to offset the
noise’s influence, and using ensemble learning to predict
the class of the static hand gesture. The overall accuracy
can reach 91.1%, and the train time is 0.6134s.

V. CONCLUSION

The hand gesture recognition based on the new im-
age skeletonization methods, extracted gesture feature
vector and using machine learning technique allow us
to increase the classification accuracy. For 5 classes
and 10 classes hand gesture classification task, the im-
provement of accuracy on test set is within the range
of 0.4% to 20.4% , and that of 5% to 18% . The
MOPCA+ADFM+DCEM method is effective in terms
of average classification accuracy on test set. It achieves
97.5% on 5 classes recognition task and 85.00% on
10 classes recognition task. In addition, for 5 classes
recognition task and 10 classed recognition task , the
training time consumed by six classifiers is within the
range of 0.7s to 8.9s and that of the 0.3s to 11s,
respectively. It is set that ensemble learning model is
the best classifier and it allows us to achieve 100% (5
classes) and 92.8% (10 classes) on test set. Increasing
the accuracy of hand gesture classification based on the
proposed skeletonization methods improves the technical
characteristics of intelligent systems using video inter-
faces for entering commands and data, and makes a
significant contribution to the development of semantic
technologies for designing such systems.
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Распознавание жестов рук на основе
свойств скелетизированных изображений
Ма Ц., Цветков В. Ю., Борискевич А. А.
Распознавание жестов рук является важной за-

дачей и может использоваться во многих практи-
ческих приложениях. В интеллектуальных системах
распознавание жестов рук может использоваться для
ввода информации посредством видеоинтерфейса. В
настоящее время распознавание жестов рук на ос-
нове скелета стало популярной темой исследований.
Существующие методы имеют низкую дискриминаци-
онную способность из-за чувствительности признаков
к шуму изображения. Мы предложили новые методы
уменьшения влияния шума на выделение признаков
изображения руки. Разработан новый метод распозна-
вания жестов рук, основанный на свойствах скелети-
зированных изображений. Цель исследования состоит
в повышении точности классификации жестов рук.
Данный подход позволяет повысить точность класси-
фикации с 5% до 21% по сравнению с существующими
известными методами.
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