УДК 004.925.84

ПРОЦЕСС ПАРАМЕТРИЧЕСКОГО 3D-МОДЕЛИРОВАНИЯ ТВЕРДОТЕЛЬНЫХ ОБЪЕКТОВ В INVENTOR

Ву С.Ч.

Белорусский государственный университет информатики и радиоэлектроники, г. Минск, Республика Беларусь

Научный руководитель: Вышинский Н.В. – канд.техн.наук, профессор, профессор кафедры ИКГ

Аннотация. В статье рассматривается процесс параметрического 3D-моделирования твердотельных объектов в Inventor. Рассмотрены этапы разработки детали и размещения детали. Предложена методика проектирования параметрической модели кронштейна. При этом получены разные варианты конструкции кронштейнов.

Ключевые слова: параметрическая модель, 3D-моделирование, Inventor, кронштейн.

Введение. Принцип параметрического моделирования – изменение геометрии объекта с помощью регулировки его параметров (формы, размера, плотности, радиуса и т.д). Заданные параметры сохраняются в базе данных, и вы сможете воспользоваться ими в любой момент.

Программа Autodesk Inventor предназначена для 3D-моделирования сложных деталей. Использовать программу можно для проектирования практически любых элементов и деталей, включая автомобильные корпусы. Помощью Inventor инженеры могут интегрировать 2D- и 3D-данные в единую среду проектирования, создавая виртуальное представление конечного продукта, проверяя форму, соответствие и функции продукта еще до его создания.

Основная часть. В Inventor параметрическая таблица содержит как параметрические размеры, так и зависимости проектирования. Зависимости проекта являются специальными компонентами результатов, которые вам требуются при просмотре таких параметров. Существуют параметры для каждой зависимости на основе вашего выбора (рисунок 1).

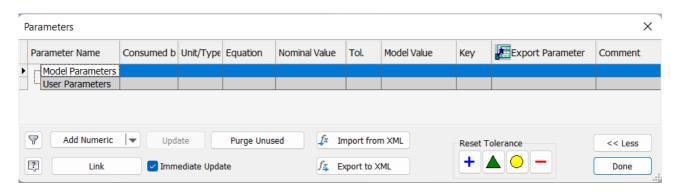


Рисунок 1 — Параметрическая таблица в Inventor

Процесс создания параметрических деталей состоит из двух этапов: разработка детали и размещение детали.

На этапе разработки детали выполняется проектирование детали и определяются все ее варианты:

- -Открыть или создать деталь (обычную или из листового металла);
- -Определите, какая часть проекта изменяется с каждым элементом;
- -Переименуйте параметры, создайте формулы и параметры пользователя;
- –Используйте команду "Создать параметрическую деталь" для определения строк таблицы, которые представляют версии (элементы). Укажите варианты параметров детали, свойств, информации о резьбе и т. д;
 - При сохранении деталь автоматически сохраняется как параметрический ряд.

59-я научная конференция аспирантов, магистрантов и студентов

На этапе размещения детали в таблице выбирается строка, которая будет представлять соответствующую версию. Inventor создает элемент параметрического ряда с помощью значений, заданных в строке таблицы. Inventor вставляет этот элемент в сборку как любой другой компонент [1].

В качестве примера рассмотрим простой кронштейн [2]. Построение начинаем с создания геометрии основания детали (рисунок 2).

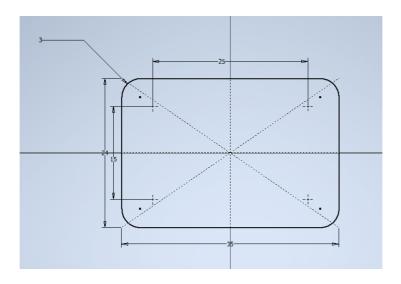


Рисунок 2 – Создание геометрии основания детали

Принимаем эскиз и сделаем общим эскиз операции выдавливания. Создадим отдельно четыре отверстия по эскизу диаметром 4 мм. Выдавим окружность диаметром 16 мм на расстояние 8 мм с уклоном (вкладка Подробности) -12 град. Создадим сквозное отверстие диаметром 10 мм концентрично конусу и получим кронштейн (рисунок 3).

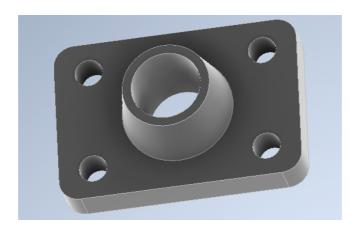


Рисунок 3 – Кронштейн

Переходим в меню Manage (Управление), откроем функцию Parameters (Параметры). Следует обозначить параметры для удобства. Габаритные размеры 35 мм и 24 мм обозначим LP и BP. Толщину пластины 5 мм обозначим как TP. Межосевые расстояния 25 мм и 15 мм обозначим как LC1 и LC2. Радиус 3 мм в RC. Диаметры четырех отверстий обозначим как DH1, DH2, DH3 и DH4. Диаметр основания конуса 16 мм обозначим как D. Высоту конуса 8 мм обозначим как HC. Угол конуса -12 град обозначим как AC. Диаметр центрального отверстия 10 мм введём обозначение DO. Оставим без изменений один размер, соответствующий уклону операции выдавливания плоской части детали (рисунок 4).

Направление «Электронные системы и технологии»

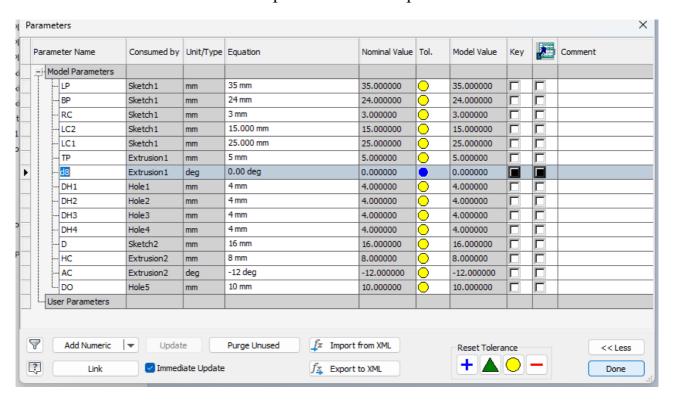


Рисунок 4 – Таблица значения параметров

Закрыть окно параметров. В той же вкладке ленты на панели Разработка выбрать *Create iPart* (Создать параметрическую деталь). Добавляем 5 исполнений. Изменяем значения в столбцах Member и Номер детали (рисунок 5):

- для исполнения 2 изменить размеры отверстий DH1...4 на 4.5 мм, HC=20 мм, AC=-3 град, материал Металл/сталь Сталь, мягкая, оттенок RGB 220 240 200;
- для исполнения 3 LP=42 мм, BP=30 мм, TP=7.5 мм, LC1=32 мм, LC2=22 мм, отверстия DH1...4 равны 5 мм. D=20 мм, HC=12 мм, AC=-7.5 град, DO=14 мм, RC=4 мм, материал Металл/сталь Сталь, легированная, оттенок RGB=240=230=160;
- для исполнения 4 BP = LP, LC2 = LC1, материал Пластик Пластик AБC, оттенок RGB 250 150 50;
- для исполнения 5 LP=30 мм, BP=1.5 бр * LP, LC1=LP 10 мм, LC2=BP 10 мм, TP=3.5 мм, материал Металл Латунь, мягкая, желтая.

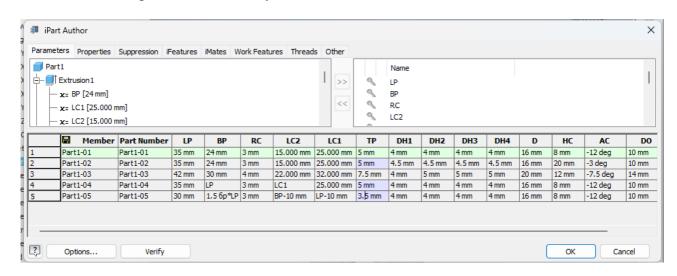


Рисунок 5 – Создание параметрического ряда

59-я научная конференция аспирантов, магистрантов и студентов

После чего получим 5 кронштейнов друг от друга из процесса параметрического моделирования (рисунок 6).

Рисунок 6 – Варианты конструкции кронштейнов

Заключение. Рассмотрены этапы разработки 3D-модели кронштейна. Выбраны параметры для параметрического моделированния модели. В результате выполненого параметрического моделирования в Inventor получено 5 вариантов кронштейна.

Список литературы

UDC 004.925.84

PROCESS OF PARAMETRIC 3D MODELING OF SOLID STATE OBJECTS IN INVENTOR

Vu X.C.

Belarusian State University of Informatics and Radioelectronics, Minsk, Republic of Belarus

Vyshinski N.V. – PhD, full professor, professor of the Department of ECG

Annotation. The article discusses the process of parametric 3D modeling of solid objects in Inventor. The stages of part development and part placement are considered. A technique for designing a parametric bracket model is proposed. At the same time, different options for the design of the brackets were obtained.

Keywords: parametric model, 3D modeling, Inventor, bracket

^{1.} Параметрические детали [Электронный ресурс]. – 2022. – Режим доступа: https://knowledge.autodesk.com/ru/support/inventor/learn-explore/caas/CloudHelp/cloudhelp/2022/RUS/Inventor-Help/files/GUID-9D7FF4CB-6045-4E2A-AC88-40A2F4DDF392-htm.html. – Дата доступа: 28.12.2022.

^{2.} Пищинский, К.В. Основы моделирования в среде Autodesk Inventor Professional/ К.В. Пищинский. — Новосибирск, 2014.