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Abstract. A deep learning framework for activity recognition based on smartphone acceleration 

sensor data, convolutional neural network (CNN) and long short-term memory (LSTM) is proposed 

in the paper. The proposed framework aims to improve the accuracy of human activity recognition 

(HAR) by combining the strengths of CNN and LSTM. The CNN is used to extract features from 

the acceleration data and the LSTM is used to model the temporal dependencies of the data. The 

proposed framework is evaluated on the publicly available dataset, it includes 6 different actions: 

walking, walking upstairs, walking downstairs, sitting, standing, and laying. The recognition 

accuracy has reached 94 %. 
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Introduction 

With the rapid popularity of smartphones and the rapid development of micro sensors, various 

MEMS sensor devices are embedded in people’s smartphone. The main advantages of MEMS sensors 

are small size, light weight, low power consumption, high reliability, high sensitivity, easy integration, 

etc. In addition, the research on human behavior recognition based on sensor-based intelligent devices 

has become an emerging research topic in recent years, traditional machine learning algorithms extract 

feature vectors from data to distinguish between classes of activities, and researchers have done a lot of 

research work in this area. FGD Silva [1] used two methods, FDR and PCA, to extract 19 features from 

the data and used SVM method to classify the activities, VNT Sang [2] applied KNN, ANN and SVM 

algorithms for classification and recognition of human behavior, R Singh [3] et al. proposed an algorithm 

for human state recognition activity using decision tree C4,5 by data mining algorithm. Since traditional 

machine learning algorithms require manual extraction of features in the data, and it is difficult for non-

professionals to extract effective feature sets, manual extraction is also subject to human error and time-

consuming, all of these methods which will reduce the accuracy of classification and recognition, but 

neural networks greatly compensate for the lack of manual feature extraction in traditional machine 

learning by building a multi-level automatic feature extraction architecture. 

Data acquisition for human behavior recognition is basically divided into two categories, video 

image-based data acquisition and wearable sensor-based data acquisition. In this paper, we focus on 

human activity recognition based on wearable sensing data. This paper uses the built-in acceleration 

sensor of a smartphone for data collection. 

The network model consists of three convolutional layer and LSTM network layers, fully 

connected layer, and one Softmax layer, and predicts the corresponding human actions from the data set. 

The proposed algorithm’s accuracy achieved 94 % and the loss is about 0,02 at the test set. 

Dataset 

We selected the data set from the UCI Human Activity Recognition Using Smartphones Data Set. 

The experiments have been carried out with a group of 30 volunteers within an age bracket of  

19-48 years. Each person performed six activities wearing a smartphone on the waist. Using its 
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embedded accelerometer, they captured 3-axial linear acceleration at a constant rate of 50 Hz. The 

experiments have been video-recorded to label the data manually. The obtained dataset has been 

randomly partitioned into two sets. 

The sensor signals (accelerometer) were pre-processed by applying noise filters and then sampled 

in fixed width sliding windows of 2,56 sec and 50 % overlap (128 readings/window). The sensor 

acceleration signal, which has gravitational and body motion components, was separated using a 

Butterworth low-pass filter into body acceleration and gravity. The gravitational force is assumed to 

have only low frequency components, therefore a filter with 0,3 Hz cutoff frequency was used. From 

each window, a vector of features was obtained by calculating variables from the time and frequency 

domain. 

After the data set is obtained, the maximum and minimum values of the data are normalized using 

Formula (1). The data in the training set is 7352561, and 7350560 data are selected as the data set 

required for the experiment. It was found that many data with the same output in the data set were 

connected, which did not meet the assumption that the training data were independent and identically 

distributed. randon.seed = 314 was selected to generate a random sequence of length 7350, which was 

used as the index of the data: 
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where max
X  – denotes the maximum value in the feature, min

X  – denotes the minimum value in the 

feature. 

Framework of CNN and LSTM algorithm 

The structure diagram of the algorithm is shown in Figure 1. Based on the cell phone tri-axis 

acceleration data collected from the public dataset, the algorithm predicts six different human behaviors 

through convolutional layer and LSTM, fully connected layer, and Softmax layer, and finally outputs 

the behavior type with the highest probability as the output result. 

 

Figure 1. The network structure of CNN-LSTM 

1D convolutional layer 1 

For the convolutional 1, we got the input tensor is (100,1,560), the batch size is 100, and input 

channel is 1, length of signal sequence is 560, the hyperparameter of the convolutional layer is shown 

as Table 1. 

In the 1D convolutional layer, it has two kinds of parameters: weights and biases. The total 

number of parameters is just the sum of all weights and biases: 

,
c

W K C N    (2) 

where the 
c

W  – is the number of weights of the convolutional layer, C  – is the number of channels of 

the input, N  – is the number of kernels, K  – is the size of kernels used in the convolutional layer, so 

we can get the weight of the convolutional layer is 320: 

c c c
P W B  , (3) 

where 
c

P  – is the number of parameters of the convolutional layer, 
c

B  – is the number of biases of the 

convolutional layer, 
c

W  – is the number of weights of the convolutional layer, so we can get the number 

of parameters of the convolution layer 1 is 384. 
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The calculation method of size (O) of the output is shown in formula (4): 

2
1

I K P
O

S

 
  , (4) 

where the I  – is the size (width) of input, K  – is the size (width) of kernels used in the convolutional 

layer, S  – is the stride of the convolution operation, P  – is padding value. Moreover, we can get the 

size of the output is 278. 

Table 1.  The hyperparameter of the 1D convolution layer 1 

Hyperparameter Value 

Input channel 1 

Output channel 64 

Kernel size 5 

Stride 2 

Padding 0 

1D convolutional layer 2 

For the convolutional 2, we got the input tensor is (100,64,278), the batch size is 100, and input 

channel is 64, length of signal sequence is 278, the size of the output is 137. The parameter and 

hyperparameter of the convolutional layer are shown as Table 2 and Table 3. 

Table 2.  The parameter value of the 1D convolution layer 2 

Parameter Value 

Weight 20480 

Bias 64 

Total 20544 

Table 3.  The hyperparameter of the 1D convolution layer 2 

Hyperparameter Value 

Input channel 64 

Output channel 64 

Kernel size 5 

Stride 2 

Padding 0 

1D convolutional layer 3 

For the convolutional 3, we got the input tensor is (100,64,137), the batch size is 100, and input 

channel is 64, length of signal sequence is 137, the size of the output is 67. The parameter and 

hyperparameter of the convolutional layer are shown as Table 4 and Table 5. 

Table 4.  The parameter value of the 1D convolution layer 3 

Parameter Value 

Weight 20480 

Bias 64 

Total 20544 

Table 5.  The hyperparameter of the 1D convolution layer 3 

Hyperparameter Value 

Input channel 64 

Output channel 64 

Kernel size 5 

Stride 2 

Padding 0 
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LSTM layer 

In the LSTM layer, input size is taken as 64 because the feature used is the 3rd convolutional 

output feature, which is the dimension 64, using convolutional features for temporal recognition, and 

the number of hidden unit size is 128. For the input tensor shape (100,64), after processing through the 

LSTM layer, the output shape become (100,128). The parameters are shown in Table 6. The 

hyperparameter of the layer are shown in Table 7, each LSTM has 128 hidden units, and that is, the 

number of neurons in the LSTM unit is 128. 

Table 6. The parameter value of the LSTM layer 

Parameter Value 

Input tensor shape (100,64) 

LSTM units 128 

Output tensor shape (100,128) 

Table 7.  The hyperparameter of the LSTM layer 

Hyperparameter Value 

Hidden layer 3 

Hidden unit size 128 

Learning rate 0.001 

Dropout 0.9 

Batch size 100 

Epoch 50 

Fully connected layer 

In the fully connected layer, we get the input tensor derived from the output of the last hidden 

layer state of the LSTM layer, the input shape is (100,128). 

After we got the input, we can multiply the input by the weight matrix [128,6] and add a bias [6], 

then we get the output of the fully connected layer (100,6), the relevant parameters are shown in Table 8 

and the calculation process is shown in formula (5): 

,y xA b   (5) 

where x  – is the input, A  – is the weight matrix, b  – is the bias. 

Table 8.  The input, condition, and output of fully connected layer  

Input shape (100,128) 

Weight matrix [128,6] 

Bias [6] 

Output shape (100,6) 

Softmax layer 

After getting the output from the fully connected layer, we use the activation function Softmax to 

map the output of the neuron to the (0,1) interval, which allowed us to perform multiple classification: 
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where iZ  – is the output value of the i  class, C  – is the number of output nodes, which also represents 

the number of categories in the classification. In this dataset, because there are 6 feature actions in this 

dataset, we set the C value to 6. 
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Evaluation indicators and results 

Evaluation refers to the stage where the results of model testing are measured and evaluated. We 

measure the performance of the model using a confusion matrix, which is also used to determine 

accuracy. The confusion matrix which we used is shown in Table 9. 

Table 9.  Confusion matrix of the six classifications tasks  

Six-class label 
Predicted label 

Total 
Laying Walking Upstairs Downstairs Sitting Standing 

True 

label 

Laying ALL ALW ALU ALD ALST ALSD TL 

Walking AWL AWW AWU AWD AWST AWSD TW 

Upstairs AUL AUW AUU AUD AUST AUSD TU 

Downstairs ADL ADW ADU ADD ADST ADSD TD 

Sitting ASTL ASTW ASTU ASTD ASTST ASTSD TST 

Standing ASDL ASDW ASDU ASDD ASDST ASDSD TSD 

Each sample in the classification task has only one defined category, and a prediction of that 

category is a correct classification, and a failure to predict it is a classification error, so the most intuitive 

metric is Accuracy. The formula is as follows: 

LL WW UU STST SDSD

L W U D ST SD

A A A A A
Accurancy

T T T T T T

   


    
, (4) 

where the 
LL

A  – denotes the accuracy of correct prediction of laying, 
WW

A  – denotes the accuracy of 

correct prediction of walking, 
UU

A  – denotes the accuracy of correct prediction of upstairs, 
DD

A  – 

denotes the accuracy of correct prediction of downstairs, 
STST

A  denotes the accuracy of correct 

prediction of sitting, 
SDSD

A  – denotes the accuracy of correct prediction of laying. 

Our model is training and testing on the UCI HAR dataset, and 70 % of the volunteers was 

selected for generating the training data and the remaining 30 % is used to test the data. We set the 

training set to 100 and train on the training set for 50 epochs. The loss value and the accuracy values are 

shown in Figure 2. 

  
a b 

Figure 2. Loss and accuracy rate of the CNN-LSTM model: a – loss rate during the training; 

b – accuracy rate during the training 

Next, we will apply the trained model to the test set to see how well the model performs on the 

test set. Figure 3 visualizes the accuracy and loss rate of the model on the test set. 

  
a b 

Figure 3. Loss and accuracy rate of the CNN-LSTM model: a – loss rate during the testing; 

b – accuracy rate during the testing 
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It can be seen from the test set that there is some fluctuation in the loss rate of the model, since 

the batch size is only 100, it does not look smooth on the test set, but it still has smaller loss rate and 

higher accuracy on average. Our proposed model achieves an average recognition accuracy of 94 % on 

the training set, while the average value of loss is about 0,25. 

Table 10.  Confusion matrix of the six -class dataset scheme on the test dataset  

Six-class label 
Predicted label 

Laying Walking Upstairs Downstairs Sitting Standing 

True 

label 

Laying 1 0 0 0 0 0 

Walking 0 0,970 0,0061 0,022 0 0 

Upstairs 0 0,067 0,900 0,037 0 0 

Downstairs 0 0,044 0,093 0,860 0 0 

Sitting 0 0 0 0 0,940 0 

Standing 0 0 0 0 0,086 0,910 

The confusion matrix in Table 10 is used to determine the performance of the trained model on 

the six human action categories. It displayed the accuracy of each class where laying is 100 %, Walking 

is 97 %, Walking upstairs is 90 %, Walking downstairs is 86 %, sitting is 94 %, and standing is 91 %. 

Next, normalize the confusion matrix in Figure 4. 

 

Figure 4. Normalized confusion matrix of six class dataset schemes 

Conclusion 

This paper is based on the UCI HAR dataset, the dataset was collected by using a smartphone 

placed around the waist of the tested volunteers, it includes six different human behavioral states: 

walking, walking upstairs, walking downstairs, sitting, standing, and laying. The proposed model 

includes three 1D convolutional layers, LSTM network layer, fully connected layer, and Softmax layer. 

The algorithm extracts data features from the input signal sequence using the three-layer convolutional 

neural network, and then uses the features as the input of the LSTM neural network. After obtaining the 

final output of the LSTM neural network, it is mapped to the fully connected layer. Finally, the output 

is transformed into the probability corresponding to the state through the Softmax layer. With the 

training of this neural network, our algorithm achieves an average accuracy of 94 % for the six feature 

activities. 
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