

102

Т Е Х Н О Л О Г И И П Е Р Е Д А Ч И И О Б Р А Б О Т К И И Н Ф О Р М А Ц И И

UDC 004.81

HUMAN PHYSICAL ACTIVITY RECOGNITION ALGORITHM BASED ON

SMARTPHONE DATA CONVOLUTIONAL NERUAL NETWOEK AND LONG

SHORT TIME MEMORY

Z.X. YANG, Z.Y. CHEN

Belarusian State University of Informatics and Radioelectronics, Republic of Belarus

Received March 19, 2023

Abstract. A deep learning framework for activity recognition based on smartphone acceleration

sensor data, convolutional neural network (CNN) and long short-term memory (LSTM) is proposed

in the paper. The proposed framework aims to improve the accuracy of human activity recognition

(HAR) by combining the strengths of CNN and LSTM. The CNN is used to extract features from

the acceleration data and the LSTM is used to model the temporal dependencies of the data. The

proposed framework is evaluated on the publicly available dataset, it includes 6 different actions:

walking, walking upstairs, walking downstairs, sitting, standing, and laying. The recognition

accuracy has reached 94 %.

Keywords: HAR, CNN, LSTM, acceleration sensor.

Introduction

With the rapid popularity of smartphones and the rapid development of micro sensors, various

MEMS sensor devices are embedded in people’s smartphone. The main advantages of MEMS sensors

are small size, light weight, low power consumption, high reliability, high sensitivity, easy integration,

etc. In addition, the research on human behavior recognition based on sensor-based intelligent devices

has become an emerging research topic in recent years, traditional machine learning algorithms extract

feature vectors from data to distinguish between classes of activities, and researchers have done a lot of

research work in this area. FGD Silva [1] used two methods, FDR and PCA, to extract 19 features from

the data and used SVM method to classify the activities, VNT Sang [2] applied KNN, ANN and SVM

algorithms for classification and recognition of human behavior, R Singh [3] et al. proposed an algorithm

for human state recognition activity using decision tree C4,5 by data mining algorithm. Since traditional

machine learning algorithms require manual extraction of features in the data, and it is difficult for non-

professionals to extract effective feature sets, manual extraction is also subject to human error and time-

consuming, all of these methods which will reduce the accuracy of classification and recognition, but

neural networks greatly compensate for the lack of manual feature extraction in traditional machine

learning by building a multi-level automatic feature extraction architecture.

Data acquisition for human behavior recognition is basically divided into two categories, video

image-based data acquisition and wearable sensor-based data acquisition. In this paper, we focus on

human activity recognition based on wearable sensing data. This paper uses the built-in acceleration

sensor of a smartphone for data collection.

The network model consists of three convolutional layer and LSTM network layers, fully

connected layer, and one Softmax layer, and predicts the corresponding human actions from the data set.

The proposed algorithm’s accuracy achieved 94 % and the loss is about 0,02 at the test set.

Dataset

We selected the data set from the UCI Human Activity Recognition Using Smartphones Data Set.

The experiments have been carried out with a group of 30 volunteers within an age bracket of

19-48 years. Each person performed six activities wearing a smartphone on the waist. Using its

103

embedded accelerometer, they captured 3-axial linear acceleration at a constant rate of 50 Hz. The

experiments have been video-recorded to label the data manually. The obtained dataset has been

randomly partitioned into two sets.

The sensor signals (accelerometer) were pre-processed by applying noise filters and then sampled

in fixed width sliding windows of 2,56 sec and 50 % overlap (128 readings/window). The sensor

acceleration signal, which has gravitational and body motion components, was separated using a

Butterworth low-pass filter into body acceleration and gravity. The gravitational force is assumed to

have only low frequency components, therefore a filter with 0,3 Hz cutoff frequency was used. From

each window, a vector of features was obtained by calculating variables from the time and frequency

domain.

After the data set is obtained, the maximum and minimum values of the data are normalized using

Formula (1). The data in the training set is 7352561, and 7350560 data are selected as the data set

required for the experiment. It was found that many data with the same output in the data set were

connected, which did not meet the assumption that the training data were independent and identically

distributed. randon.seed = 314 was selected to generate a random sequence of length 7350, which was

used as the index of the data:

min

max min

scale

X X
X ,

X X





 (1)

where max
X – denotes the maximum value in the feature, min

X – denotes the minimum value in the

feature.

Framework of CNN and LSTM algorithm

The structure diagram of the algorithm is shown in Figure 1. Based on the cell phone tri-axis

acceleration data collected from the public dataset, the algorithm predicts six different human behaviors

through convolutional layer and LSTM, fully connected layer, and Softmax layer, and finally outputs

the behavior type with the highest probability as the output result.

Figure 1. The network structure of CNN-LSTM

1D convolutional layer 1

For the convolutional 1, we got the input tensor is (100,1,560), the batch size is 100, and input

channel is 1, length of signal sequence is 560, the hyperparameter of the convolutional layer is shown

as Table 1.

In the 1D convolutional layer, it has two kinds of parameters: weights and biases. The total

number of parameters is just the sum of all weights and biases:

,
c

W K C N   (2)

where the
c

W – is the number of weights of the convolutional layer, C – is the number of channels of

the input, N – is the number of kernels, K – is the size of kernels used in the convolutional layer, so

we can get the weight of the convolutional layer is 320:

c c c
P W B  , (3)

where
c

P – is the number of parameters of the convolutional layer,
c

B – is the number of biases of the

convolutional layer,
c

W – is the number of weights of the convolutional layer, so we can get the number

of parameters of the convolution layer 1 is 384.

104

The calculation method of size (O) of the output is shown in formula (4):

2
1

I K P
O

S

 
  , (4)

where the I – is the size (width) of input, K – is the size (width) of kernels used in the convolutional

layer, S – is the stride of the convolution operation, P – is padding value. Moreover, we can get the

size of the output is 278.

Table 1. The hyperparameter of the 1D convolution layer 1

Hyperparameter Value

Input channel 1

Output channel 64

Kernel size 5

Stride 2

Padding 0

1D convolutional layer 2

For the convolutional 2, we got the input tensor is (100,64,278), the batch size is 100, and input

channel is 64, length of signal sequence is 278, the size of the output is 137. The parameter and

hyperparameter of the convolutional layer are shown as Table 2 and Table 3.

Table 2. The parameter value of the 1D convolution layer 2

Parameter Value

Weight 20480

Bias 64

Total 20544

Table 3. The hyperparameter of the 1D convolution layer 2

Hyperparameter Value

Input channel 64

Output channel 64

Kernel size 5

Stride 2

Padding 0

1D convolutional layer 3

For the convolutional 3, we got the input tensor is (100,64,137), the batch size is 100, and input

channel is 64, length of signal sequence is 137, the size of the output is 67. The parameter and

hyperparameter of the convolutional layer are shown as Table 4 and Table 5.

Table 4. The parameter value of the 1D convolution layer 3

Parameter Value

Weight 20480

Bias 64

Total 20544

Table 5. The hyperparameter of the 1D convolution layer 3

Hyperparameter Value

Input channel 64

Output channel 64

Kernel size 5

Stride 2

Padding 0

105

LSTM layer

In the LSTM layer, input size is taken as 64 because the feature used is the 3rd convolutional

output feature, which is the dimension 64, using convolutional features for temporal recognition, and

the number of hidden unit size is 128. For the input tensor shape (100,64), after processing through the

LSTM layer, the output shape become (100,128). The parameters are shown in Table 6. The

hyperparameter of the layer are shown in Table 7, each LSTM has 128 hidden units, and that is, the

number of neurons in the LSTM unit is 128.

Table 6. The parameter value of the LSTM layer

Parameter Value

Input tensor shape (100,64)

LSTM units 128

Output tensor shape (100,128)

Table 7. The hyperparameter of the LSTM layer

Hyperparameter Value

Hidden layer 3

Hidden unit size 128

Learning rate 0.001

Dropout 0.9

Batch size 100

Epoch 50

Fully connected layer

In the fully connected layer, we get the input tensor derived from the output of the last hidden

layer state of the LSTM layer, the input shape is (100,128).

After we got the input, we can multiply the input by the weight matrix [128,6] and add a bias [6],

then we get the output of the fully connected layer (100,6), the relevant parameters are shown in Table 8

and the calculation process is shown in formula (5):

,y xA b  (5)

where x – is the input, A – is the weight matrix, b – is the bias.

Table 8. The input, condition, and output of fully connected layer

Input shape (100,128)

Weight matrix [128,6]

Bias [6]

Output shape (100,6)

Softmax layer

After getting the output from the fully connected layer, we use the activation function Softmax to

map the output of the neuron to the (0,1) interval, which allowed us to perform multiple classification:

 i

1

Soft max
i

c

Z

C Z

c

e
Z

e





, (3)

where iZ – is the output value of the i class, C – is the number of output nodes, which also represents

the number of categories in the classification. In this dataset, because there are 6 feature actions in this

dataset, we set the C value to 6.

106

Evaluation indicators and results

Evaluation refers to the stage where the results of model testing are measured and evaluated. We

measure the performance of the model using a confusion matrix, which is also used to determine

accuracy. The confusion matrix which we used is shown in Table 9.

Table 9. Confusion matrix of the six classifications tasks

Six-class label
Predicted label

Total
Laying Walking Upstairs Downstairs Sitting Standing

True

label

Laying ALL ALW ALU ALD ALST ALSD TL

Walking AWL AWW AWU AWD AWST AWSD TW

Upstairs AUL AUW AUU AUD AUST AUSD TU

Downstairs ADL ADW ADU ADD ADST ADSD TD

Sitting ASTL ASTW ASTU ASTD ASTST ASTSD TST

Standing ASDL ASDW ASDU ASDD ASDST ASDSD TSD

Each sample in the classification task has only one defined category, and a prediction of that

category is a correct classification, and a failure to predict it is a classification error, so the most intuitive

metric is Accuracy. The formula is as follows:

LL WW UU STST SDSD

L W U D ST SD

A A A A A
Accurancy

T T T T T T

   


    
, (4)

where the
LL

A – denotes the accuracy of correct prediction of laying,
WW

A – denotes the accuracy of

correct prediction of walking,
UU

A – denotes the accuracy of correct prediction of upstairs,
DD

A –

denotes the accuracy of correct prediction of downstairs,
STST

A denotes the accuracy of correct

prediction of sitting,
SDSD

A – denotes the accuracy of correct prediction of laying.

Our model is training and testing on the UCI HAR dataset, and 70 % of the volunteers was

selected for generating the training data and the remaining 30 % is used to test the data. We set the

training set to 100 and train on the training set for 50 epochs. The loss value and the accuracy values are

shown in Figure 2.

a b

Figure 2. Loss and accuracy rate of the CNN-LSTM model: a – loss rate during the training;

b – accuracy rate during the training

Next, we will apply the trained model to the test set to see how well the model performs on the

test set. Figure 3 visualizes the accuracy and loss rate of the model on the test set.

a b

Figure 3. Loss and accuracy rate of the CNN-LSTM model: a – loss rate during the testing;

b – accuracy rate during the testing

107

It can be seen from the test set that there is some fluctuation in the loss rate of the model, since

the batch size is only 100, it does not look smooth on the test set, but it still has smaller loss rate and

higher accuracy on average. Our proposed model achieves an average recognition accuracy of 94 % on

the training set, while the average value of loss is about 0,25.

Table 10. Confusion matrix of the six -class dataset scheme on the test dataset

Six-class label
Predicted label

Laying Walking Upstairs Downstairs Sitting Standing

True

label

Laying 1 0 0 0 0 0

Walking 0 0,970 0,0061 0,022 0 0

Upstairs 0 0,067 0,900 0,037 0 0

Downstairs 0 0,044 0,093 0,860 0 0

Sitting 0 0 0 0 0,940 0

Standing 0 0 0 0 0,086 0,910

The confusion matrix in Table 10 is used to determine the performance of the trained model on

the six human action categories. It displayed the accuracy of each class where laying is 100 %, Walking

is 97 %, Walking upstairs is 90 %, Walking downstairs is 86 %, sitting is 94 %, and standing is 91 %.

Next, normalize the confusion matrix in Figure 4.

Figure 4. Normalized confusion matrix of six class dataset schemes

Conclusion

This paper is based on the UCI HAR dataset, the dataset was collected by using a smartphone

placed around the waist of the tested volunteers, it includes six different human behavioral states:

walking, walking upstairs, walking downstairs, sitting, standing, and laying. The proposed model

includes three 1D convolutional layers, LSTM network layer, fully connected layer, and Softmax layer.

The algorithm extracts data features from the input signal sequence using the three-layer convolutional

neural network, and then uses the features as the input of the LSTM neural network. After obtaining the

final output of the LSTM neural network, it is mapped to the fully connected layer. Finally, the output

is transformed into the probability corresponding to the state through the Softmax layer. With the

training of this neural network, our algorithm achieves an average accuracy of 94 % for the six feature

activities.

References

1. Silva F.G., Galeazzo E. // Accelerometer based intelligent system for human movement recognition. 2013.

P. 20–24.

2. Vnt Sang., Vu Ngoc Thanh. // Human activity recognition and monitoring using smartphones. 2015.

P. 481–485.

3. Singh R., Kumar H., Singla R.K. // Analysis of Feature Selection Techniques for Network Traffic Dataset. 2014.

P. 42–46.

