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Annotation. The continuous advancement of smartphone sensors has brought more opportunities for the universal application of human 
motion recognition technology. Based on the data of the mobile phone's three-axis acceleration sensor, using combining a double-layer 
Long Short Time Memory (LSTM) and full connected layers allow us to improve human actions recognition accuracy, including walking, 
jogging, sitting, standing, and going up and down stairs. This is helpful for smart assistive technology. It is shown that physical activity 
classification accuracy is equal to 98.4 %. 
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Traditional sensor devices are bulky and expensive. With the continuous development of smart 
phones in recent years, the acceleration sensors of mobile phones have also continued to improve. It has 
the obvious advantages of small size, high penetration rate and lower price, which provides a new idea for 
the application of intelligent assistance technology and so on. Recognition of human activities from sensor 
data is at the core of intelligent assistive technologies, such as smart home, rehabilitation, health support, 
skills assessment or industrial environments [1]. For example, the project of Inooka et al. predicts the energy 
consumption of users by recognizing their activities [2], and Mathie et al. judges whether users are safe or 
not by recognizing their actions [3]. This work is motivated by two requirements of activity recognition: 
improving recognition accuracy and reducing reliance on engineered features to address increasingly 
complex recognition problems. 

Human Activity Recognition (HAR) is based on the assumption that specific body movements 
translate into characteristic sensor signal patterns, which can be sensed and classified using machine 
learning techniques. We use data collected from accelerometer sensors. Almost every modern smartphone 
has a three-axis accelerometer that measures acceleration in all three spatial dimensions. 

We selected the data set from the Wireless Sensor Data Mining (WISDM) project, which collected 
1,098,207 experimental data generated from 29 volunteers carrying smartphones to perform specified 
actions every 50 ms, and each piece of data consists of 6 parts: Username, specified action, timestamp 
and accelerometer values for x, y and z axis.  

Before feeding the raw data into the network model, we need to perform preprocessing and feature 
generation operations on it. Due to the impact of environmental changes in the data collection process, the 
data from the mobile phone accelerometer inevitably has a lot of measurement noise. The main method to 
eliminate these noises is to filter the original data with a low-pass filter, which helps to improve the accuracy 
of model recognition. The reason why the low-pass filter can be used is based on the following two 
conditions: 1. The noise is mainly concentrated in the high-frequency band; 2. When the human body is 
moving, the accelerometer measurement value is only related to gravity and human body acceleration, both 
of which are of small magnitude.  

As a low-pass filter with a maximum flat amplitude response, the Butterworth filter has been widely 
used in the field of communication and electronic measurement, and can be used as a filter for detecting 
signals. The first-order Butterworth filter has an attenuation rate of 6 dB per octave and 20 dB per decade. 
A second-order Butterworth filter has an attenuation rate of 12 dB per octave, a third-order Butterworth filter 
has an attenuation rate of 18 dB per octave, and so on. The Butterworth low-pass filter can be expressed 

as the square of the amplitude |H(jw)| and the frequency w as formula (1): 
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where wc - cutoff frequency, that is, the frequency at which the amplitude drops to -3db, wp - passband 

edge frequency, ε - damping ratio.  
We experimented with Butterworth filters of different orders and cut-off frequencies. The Butterworth 

filter with a third-order cut-off frequency of 4 performed best. The graphs before and after filtering the raw 
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data of 200 three-axis accelerometers with label of sitting in the dataset using a Butterworth filter with a 
third-order cutoff frequency of 4 are shown in Fig. 1 and Fig. 2. After filtering, the graph is visibly flattened. 

 

 

 

Figure 1 - Three-axis accelerometer plot labeled as sitting before filtering using a third-order 4 Hz 
Butterworth filter 

 

 

 

Figure 2 - Three-axis accelerometer plot labeled as sitting after filtering using a third-order 4 Hz Butterworth 
filter 

We use a window of size 200 with an overlap of 90 % to divide the x, y and z axis accelerometer 
and label part in the original data, store them as acceleration data and label data respectively for 
preprocessing. We get 54901 windows and split both data into a training set (80 %) and a test set (20 %). 

We trained a double layer LSTM neural network (implemented in TensorFlow) for HAR from 
accelerometer data with the purpose of providing an algorithm with higher recognition accuracy. The trained 
model will be exported/saved and added to the Android app. The network model consists of double layer 
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LSTM network layers and double fully connected layer (FCL), and predicts the corresponding human 
actions from the x, y and z axis acceleration count values from the data set. The proposed algorithm 
achieved 98,4 % accuracy and a loss of 0,2 on the test set. 
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