
A. Gudkov

ASYNCHRONOUS APPROACH TO THE DEVELOPMENT
OF MODERN BACK-END APPLICATIONS

This article explores the recent trend towards asynchronous approaches of Back-End applications development,

highlighting the numerous advantages they o�er over traditional synchronous models. Also explores why NGINX

web servers became more preferred over Apache, and the advantages of asynchronous database queries.

Introduction

Nowadays the world of web development is
constantly evolving. From the begging of 21-th
century the amount of people using Web services
have been growing exponentially which led to the
adaptation of services to such kinds of loads. And
one of the most recent trends in this sphere is about
asynchronous techniques of Back-End applications,
which includes asynchronous server modeling and
handling of asynchronous database operations.

I. Asynchronous server model

For better understanding let's begin from
classic synchronous server model (blocking I/O
model). In this model, the server creates a
new thread for each incoming request which is
responsible for handling this request and sending
the response back to the client. While the thread
is processing the request, it awaits, it means that
the thread is blocked and can't handle any other
requests until the I/O operation for the current
request is completed (�gure 1).

Fig. 1 Synchronous server model

However, it can be ine�cient in handling large
numbers of concurrent requests because creating
and managing a large number of threads requires
a signi�cant amount of system resources. The rapid
growth of incoming requests can lead to the �thread
hunger�, the situation, when all threads ful�lled the
memory they use and the only thing the processor
can do is just switching between threads without
allowing them to perform any tasks. There also can
be a situation when thread resources were allocated
by OS, but it idles. Sometimes "deadlocks"can
occur � when multiple threads refer to the same
memory or storage resources.

Based on this model, the most popular Apache
web server was developed in 1995 [2]. For about
20 years it coped with his task perfectly as during
that time amount of web-sites clients was not so big.
But the time passed, the number of users has grown
signi�cantly and Apache faced problems which led
to the creation of a new server model.

Asynchronous server model (non-blocking
I/O) allows the server not to wait for a client request
to complete and moves to the next operation,
which allows multiple requests to be processed
simultaneously even in one main thread.

To achieve non-blocking I/O, asynchronous
servers use an event loop to handle incoming
requests [4]. The event loop continuously checks
for new requests and processes them using callback
functions. When a request requires I/O operations,
the server delegates the task to a separate worker
(another thread, process, external service), allowing
the event loop to continue processing other requests
and not to block the main thread. Once the I/O
operation is complete, it invokes the appropriate
callback function to handle the request result (�gure
2).

Fig. 2 Asynchronous server model

By using asynchronous model applications can
handle large numbers of concurrent connections
with low resource consumption, reducing latency
and improving response times. This is especially
important for real-time Web applications, such as
online gaming platforms, �nancial trading systems,
and social media networks, which should always be
very responsive to user and where delays can be a
major issue.

One disadvantage of asynchronous servers is
that they can be more di�cult to program and

52

debug than synchronous servers. Asynchronous
code can be complex and di�cult to understand,
and the use of callback functions can lead to nested
and convoluted code.

Based on this model NGINX web server was
developed [1]. It also o�ers superior performance
for static content. This is due to its use of a
highly optimized HTTP engine, which is speci�cally
designed for serving static �les. Additionally,
NGINX has a smaller memory footprint than
Apache, making it ideal for use in resource-
constrained environments (�gure 3).

Fig. 3 Amount of available requests/second per
concurrent connections count

As NGINX was developed based on modern
web requirements it includes a set of features
and modules such as load balancing, caching, SSL
encryption, proxying, etc. However, Apache is still
a good choice for servers with a small number of
incoming requests.
II. Asynchronous database operations

The idea of asynchronous database operations
is similar to asynchronous server model � you
get more performance by concurrency. A single
database connection can't execute instructions both
synchronously and others asynchronously. You need
to specify the SQL ñonnection executing mode in
your data source [3].
In asynchronous execution mode, you instruct the
database engine to perform an operation, then the
database engine works in the background while
the application keeps running. When the operation
�nishes the database engine dispatches an event
to alert you to that fact. The key bene�t of
asynchronous execution is that you release the
business logics main thread while the database is
doing its job (in the background).
This is especially valuable when the operation takes
a notable amount of time to run. On the other hand,
in synchronous execution mode operations don't

run SQL instructions in the background. You tell
the database engine to perform an operation and
the code pauses at that point. When the operation
completes, execution continues with the next line of
your code.

 Fig. 4 Process of asynchronous database operation

III. Conclusion

Asynchronous server models and asynchronous
database operations are becoming increasingly
important for the development of high-performance,
scalable, and fault-tolerant modern Back-End
applications. They are particularly useful in real-
time Web applications, such as online gaming
platforms, �nancial trading systems, and social
media networks, where those parameters play
signi�cant role. As the demands of modern systems
continue to grow, it is likely that we will see even
more widespread adoption of these approaches in
the coming years.

1. DeJonghe D. The Complete NGINX Cookbook:
Advanced Recipes for High-Performance Load
Balancing / D. DeJonghe. O'Reilly Media Inc., 1005
Gravenstein Highway North, Sebastopol, CA 95472,
USA, 2019. � 181 p.

2. Laurie B. Apache: The De�nitive Guide / B. Laurie,
P. Laurie. � O'Reilly Media Inc., 1005 Gravenstein
Highway North, Sebastopol, CA 95472, USA, 2002. �
536 p.

3. Molinaro A. SQL Cookbook: Query Solutions and
Techniques for All SQL Users / A. Molinaro, R. de
Graaf. � O'Reilly Media Inc., 1005 Gravenstein Highway
North, Sebastopol, CA 95472, USA, 2020. � 567 p.

4. Parker D. JavaScript with Promises: Managing
Asynchronous Code / D. Parker. � O'Reilly Media
Inc., 1005 Gravenstein Highway North, Sebastopol, CA
95472, USA, 2015. � 92 p.

Gudkov Alexey, 3-rd grade student in the Faculty of Information Technology and Management of
BSUIR, gudkov.bsuir@gmail.com.

Scienti�c supervisor: Tro�movich Alexey, Senior Lecturer in the Faculty of Information Technology
and Management of BSUIR, tro�maf@bsuir.by.

53

	Cheng ChengliangSentiment extraction and recognition algorithm

