
59-я Научная Конференция Аспирантов, Магистрантов и Студентов БГУИР, Минск, 2023

416

One of the principal concerns associated with the AI technology pertains to the issue of bias. The
effectiveness of AI systems is contingent on the quality of the data on which they are trained. However, if
the data is biased, the AI will be biased as well. For instance, in 1998, the US government devised the
Correctional Offender Management Profiling for Alternative Sanctions (COMPAS) algorithm to identify
individuals with a high likelihood of committing crimes. Nevertheless, this approach was found to be flawed,
with African-American men being falsely accused at a disproportionately higher rate than white men [1].
Similarly, Amazon’s AI-powered recruitment system was discovered to be biased against women and ethnic
minorities [2], most likely because the neural network was trained on data primarily featuring European-
looking men. So, the root of this problem lies in the data on which AI is trained, which often contains inherent
biases and prejudices. It is therefore imperative to address these issues in the data used to train AI systems
to ensure the ethical and equitable deployment of the AI technology.

Another issue is the ethical implications of AI decision-making, particularly in critical situations. For
example, the emergence of self-driving cars has raised questions about the ethics of programming
machines to make life-or-death decisions. In a hypothetical scenario where a self-driving car has to choose
between swerving into a car or a motorbike to avoid hitting a large object in front of it, the dilemma is
controversial. There is no easy answer, and different people would make different decisions based on their
individual moral beliefs. However, AI systems must be programmed in advance to make these decisions,
which raises concerns about how these ethical judgments are being made.

Privacy is another significant concern with AI. For instance, Hello Barbie, a doll equipped with AI that
can converse with children, has raised questions about the privacy implications of training a neural network
on the personal stories children may share with the toy. While the toy’s manufacturers may not be using
this data to feed advertisers, they are still attempting to create deep emotional bonds between children and
their toys, which could have problematic implications. Additionally, the collection and processing of personal
information by AI systems used for security purposes can raise concerns about data breaches, identity
theft, and financial fraud.

One of the significant drawbacks of AI is the potential for large corporations to establish monopolies
in the market through technology [3]. AI's sophisticated capabilities can exacerbate inequalities not only
among producers but also between nations. Moreover, many examples have demonstrated that AI has
numerous disadvantages, with most of the issues stemming from human factors such as biases in data
collection and algorithmic design.

Furthermore, the concentration of power in the hands of a few dominant firms in the AI industry could
potentially stifle competition, limit innovation, and exacerbate existing economic and social disparities.

The development and deployment of AI technology must be governed by ethical and regulatory
frameworks that prioritize transparency, accountability, and fairness. Such frameworks should also consider
the potential impact of AI on employment, privacy, and human rights, among other critical areas. It is
therefore essential to address the potential downsides of AI while maximizing its potential benefits for
society.

References:
1. Can the criminal justice system’s artificial intelligence ever be truly fair? [Electronic resource]. – Mode of access:

https://massivesci.com/articles/machine-learning-compas-racism-policing-fairness/. – Date of access: 05.03.2023.
2. Amazon scraps secret AI recruiting tool that showed bias against women [Electronic resource]. – Mode of access:

https://www.reuters.com/article/us-amazon-com-jobs-automation-insight-idUSKCN1MK08G. – Date of access: 09.03.2023.
3. Stahl, B.C. Artificial Intelligence for a Better Future, An Ecosystem Perspective on the Ethics of AI and Emerging Digital

Technologies / B.C. Stahl. – Berlin : Springer, 2021. – 128 p.

44. IMPORTANCE OF ASSEMBLY LANGUAGE FOR
PROGRAMMERS

Urbanovich A.A.

Belarusian State University of Informatics and Radioelectronics
Minsk, Republic of Belarus

Subbotkina I.G. ‒ Associate Professor

A short introduction to CPU processes is given in this paper. The description of Assembly work principles, which are based on CPU
processes, is presented. Based on Assembly work principles advantages and disadvantages of the language are defined. Taking
them into consideration the importance of Assembler for programmers is determined.

Assembly language, commonly referred to as "assembler," is a low-level programming language
that directly interacts with computer hardware. It emerged in the 1940s and was the primary tool for software

59-я Научная Конференция Аспирантов, Магистрантов и Студентов БГУИР, Минск, 2023

417

development until higher-level programming languages were introduced. But even now, when programmers
have such advanced tools as C#, Java, Python, and etc., Assemblers continue to be utilized as "bridges"
between high-level language operators and the sequence of binary digits[1]. Figure 1 demonstrates the
conversion of high-level language operations into binary digits.

Figure 1 ‒ Example of code translation

In order to gain a comprehensive understanding of assembler work, it is imperative to delve into
the intricate internal processes of the central processing unit (CPU). CPU is only a little piece of silicon with
billions of transistors, and that leads to the question “How does it work with numbers?”. In order to address
this inquiry, an examination of numerical systems is warranted. The primary criterion for the selection of a
numerical system in digital devices is its minimal number of values, as it facilitates the production and
enhances the resilience of components that operate with these values against interference.

The binary number system is the most suitable option to work with because it operates with only
two numbers: 1 and 0. These digits can be easily represented by various physical phenomena such as
electricity (1 for power on and 0 for power off), magnetic field (1 for the presence of a magnetic field and 0
for the absence of a magnetic field), and so on. Hence each CPU instruction is technically implemented in
the form of a sequence of electrical signals of varying voltage.

A computer processor is made up of several components, including the control unit, arithmetic logic
unit (ALU), registers, cache memory, memory management unit (MMU), bus interface unit (BIU), clock
generator, input/output (I/O) controller, interrupt controller, and floating-point unit (FPU).

The control unit manages the flow of data within the processor. As an input, CU fetches instruction
or program command, which enters the command register. Once the instruction is fetched, the control unit
decodes it to determine what operation needs to be performed. The decoding process involves breaking
down the instruction into its component parts, such as the opcode (which specifies the operation) and the
operands (which specify the data on which the operation will be performed). When the instruction has been
decoded, the control unit sends signals to the appropriate components to perform the operation. For
example, if the instruction is an arithmetic operation, the control unit sends signals to the arithmetic logic
unit (ALU) to perform the calculation. Once the operation is completed, the result is stored in a register
called the accumulator. The control unit then sends signals to store the result in memory or send it to
another component for further processing [2]. Schematic representation of CPU processes is shown in
figure 2.

Figure 2 ‒ Schematic representation of CPU internal processes

Assembly language works providing a set of instructions that are executed by the CPU based on
the principles described above. These instructions are written in a form that is easily understood by the

59-я Научная Конференция Аспирантов, Магистрантов и Студентов БГУИР, Минск, 2023

418

CPU, allowing it to execute them quickly and efficiently. Each instruction performs a specific task, such as
moving data from one location to another or performing arithmetic operations.

Assembly language programs are written using mnemonic codes that represent the individual
instructions. Mnemonic can operate with CPU’s registers, memory cells, numeric constants, labels and so
on. These codes are then assembled into machine code, which is the actual code being executed by the
CPU. The assembly process involves translating the mnemonic codes into their corresponding machine
code instructions, which are then loaded into memory for execution. There is no specific syntax for
Assembly language as there exist different processor’s architectures, thus each Assembler variation has
its own set of mnemonics, although they generate the same numeric machine code.

One of the most significant advantages of assembly language is its ability to access and manipulate
hardware resources directly. This means that programmers can write code that is highly optimized for
specific hardware platforms, resulting in faster and more efficient code. Assembly language also allows
programmers to write code that is smaller and more compact than the code written in high-level languages
like Java or Python.

Another important benefit of assembly language is its ability to provide greater control over the code
execution. With assembly language, programmers can control the exact sequence of instructions that are
executed by the CPU to adjust their programs for maximum performance. Assembly language also provides
a greater degree of precision and accuracy than high-level languages, making it ideal for tasks that require
exact calculations or precise control over hardware resources. It plays a vital role in the field of reverse
engineering as well. By analyzing the assembly code of an application, developers can gain insights into
how it works and identify potential vulnerabilities or security flaws [3].

One of the main disadvantages of Assembler is that programmers must be familiar with the specific
instruction set architecture (ISA) of the hardware they are programming for. Different processors have
different ISAs, and each ISA has its own set of instructions that can be used to perform specific tasks. As
such, programmers must be able to read and understand technical documentation to determine which
instructions are available and how they can be used to achieve specific goals. In addition to technical
knowledge, programming in assembly language also requires a high level of attention to detail and a
willingness to work with complex code. Assembly language code is often much more verbose than higher-
level languages like Python or Java, and requires a deep understanding of how each instruction works and
how it affects program execution. One more aspect cannot be overlooked: Assembly language has no data
type control, therefore a programmer himself must determine the meaning of the value entered into
memory: whether it is a number or a lowercase character, and the permissible operations on this value.
Finally, programming in assembly language requires a lot of patience and persistence. Debugging code at
this low level can be incredibly challenging, as errors are often difficult to detect and diagnose.
Programmers must be willing to spend hours or even days working through complex code to identify and
fix errors.

In conclusion, while assembly language may not be as widely used as it once was, it still holds
immense importance in the world of computing. Its efficiency, low-level control, and ability to access
hardware directly make it an ideal choice for certain types of applications. Additionally, learning assembly
language can provide valuable insights into computers work and improve a programmer's overall
understanding of software development.

References:
1. Assembly Language [Electronic resource]. ‒ Mode of Access: https://www.investopedia.com/terms/a/assembly-

language.asp ‒ Date of Access: 03.03.23.
2. Почему Ассемблер ‒ это круто, но сложно [Electronic resource]. ‒ Mode of Access: https://thecode.media/assembler/

‒ Date of Access: 06.03.23.
3. Что такое ассемблер и нужно ли его изучать [Electronic resource]. ‒ Mode of Access:

https://skillbox.ru/media/code/chto-takoe-assembler/ ‒ Date of Access: 09.03.23.

45. SENSOR DATA COLLECTING DEVICE

Fikova L.V., Avsyanik E.S., Demenkovets D.V.

Belarusian State Technological University

 Minsk, Republic of Belarus

Belarusian State University of Informatics and Radioelectronics

Minsk, Republic of Belarus

Brancevich P. J. - PhD in Technology

The description of sensor data collecting device is presented in this paper. Embedded systems impact on up-to-date devices is
analyzed.

