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Two types of dispersion relations (DRs) in condensed media and associated momentum transfer mechanisms are discussed: 
gapless DRs corresponding to acoustic modes and DRs with energy (or frequency) gap. Studying the viscoelastic effects in 
condensed media based on the generalization of the Maxwell-Frenkel approach, the emphasis was placed on the gap states in 
the momentum transfer mechanisms (GMS), when the k-gap was accompanied by qualitative changes in the DRs type. In this 
paper, the gap states in the mechanisms of momentum transfer in liquids are associated with the effects of shear elasticity and 
the formation of collective modes of quasi-plastic shears under conditions of the established type of critical phenomena in the 
ensembles of shear defects — structural-scaling transitions. It has been found that the formation of collective shear modes, 
having the character of self-similar solutions of the autosoliton type, accounts for the qualitative change in the dispersion 
properties corresponding to the quasi-plastic momentum transfer mechanisms operating in the characteristic range of loading 
times. The results of comparison with the data of original experiments confirm the initiation of quasi-plastic mechanisms 
of momentum transfer in liquids during the formation of collective shear modes and corresponding change in dissipative 
properties.
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1. Introduction

In open dissipative systems the states with “gaps” in 
the momentum transfer mechanisms (GMS  — Gapped 
Momentum States [1– 3]) are traditionally associated with 
specific dynamic and thermodynamic properties. States with 
gaped mechanisms of momentum transfer in the k-space can 
be of crucial importance for properties of such systems as 
liquids under turbulence, dusty plasma, plastically deformed 
materials, and biological objects. These states were identified 
in the study of viscoelastic properties of liquids using the 
Maxwell-Frenkel approach and were interpreted as the 
consequence of changes in the dispersion relations (DR). 
The latter illustrate the transition from the mechanisms 
determined by the energy (frequency) spectrum to the 
mechanisms that determine the behavior of the system in 
the space of wave numbers (k-space) and the corresponding 
qualitative changes in the momentum transfer mechanism. 
The fundamental idea of Frenkel’s kinetic theory of liquids 
[4] is that liquid particles, the same as solid oscillate for some 
time in the vicinity of the equilibrium position and then move 
by diffusion to the neighboring quasi-equilibrium positions. 
To describe this process, an average time τF between the 
diffusion jumps was introduced and the existence of shear 
modes in liquids was predicted at times τ, which are shorter 

than the Frenkel time and determined by the characteristic 
frequency:
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Frenkel qualified the state of a deformable solid as a basic state 
for describing a liquid as a condensed medium and proposed 
to determine viscosity using the operator A =1+ τF d / dt.
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where τF = η / G is the relaxation time in the Maxwell equation
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Here ε is the shear strain, σ is the shear stress. The 
hydrodynamic viscosity is determined after substituting 
the operator M = G(1− A−1) for the shear modulus G into 
the momentum conservation law, which, in this case, is 
transformed to the well-known Navier-Stokes equation for 
the mass velocity v
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Substituting solution (4) in the form v = v0exp(i(kx − ωt))  
leads to the following dispersion relation:
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containing the complex value of the frequency
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From (6) follows the expression for the real part of ω for 
ck >1/(2τ) 
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and solution (4) written as
               

v = t i t
F

exp 2 exp�
�

�
�

�

�
� � �

�
� .

  
(8)  

In this case, the “gap” in the k-space appears in the part of the 
spectrum k > kg, where
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The “gap” in a certain range of the wave numbers 
k corresponds to a change in the momentum transfer 
mechanism during the formation of shear modes. The value 
of kg is interpreted as an “order parameter”, which determines 
the “hardness” of the transition. A jump in k-space can 
be associated with a finite length cτF of the shear wave 
propagation in a liquid, which is interpreted as an “elastic” 
shear commonly observed in a solid del = cτF. This definition 
of a jump in the wave numbers reflects the fact that in liquids 
there are regions of dynamic behavior of characteristic size 
cτF, which experience shear deformation typical of solids. 
The identification of the jump region in the space of wave 
numbers, beginning with kg, allows us to introduce an 
ensemble of dynamic regions of characteristic size cτF , where 
shear deformation with a wavelength λ is realized. The range 
of the shear wave propagation length d is defined as d ≈ λωτF, 
where ωτF  >1. According to d / λ ≈ ωτF , the propagation length 
d significantly exceeds the wavelength λ in the mode ωτF >1.

It is crucially important that a qualitative change in the 
dynamics occurs in k-space of wave numbers. This is the 
consequence of differences in the local nature of relaxation 
processes (the jump-like movement of particles considered 
by Frenkel) and the extensional nature of the wave. In liquids, 
the propagation of shear waves does not imply that the 
behavior of the entire ensemble of particles will be similar 
to the behavior in a solid. This is because of the particle 
displacement to a distance d, where a wave front of a new 
dissipative nature arises. The observed dynamics corresponds 
to Frenkel’s definition of a liquid as a condensed state that 
retains the properties of a solid and, as a result, provides the 
realization of the momentum transfer mechanisms according 
to scenarios characteristic of a solid with the dynamics of the 
corresponding structural (thermodynamic) variables. This 
conclusion was confirmed in [5] by measuring the relaxation 
spectrum under conditions of shear flow of liquids under the 
applied shear harmonic perturbations with a frequency of 
105 Hz, at which shear elasticity occurred.

The presence of large relaxation times is explained in [6] 
by the ability of the oriented groups of molecules to perform 
coordinated displacements and the presence of localized 
slips between groups of molecules. These localized slips 
are of a mesoscopic nature (similar to that of dislocations) 
and represent the change in the symmetry properties of the 
medium in terms of localization of the distortion tensor [7]. 
The nature and mechanism of localized shear modes are the 
subjects of intense research.

2. Collective shear modes in condensed media

Statistical thermodynamics and kinetics of condensed matter 
with microshears, which were developed in [8], made it possible 
to establish a special type of critical behavior (structural scaling 
transitions) accompanied by the formation of collective 
(autosoliton) shear modes. The established form of the 
nonequilibrium free energy F of a medium with microshears 
has the form of a generalized Ginzburg-Landau expansion 
of the variable characterizing the shear deformation, which 
determines the average value of the ensemble of microshears 
and is caused by their interaction:
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where A, B, C, D and χ are the expansion parameters; δ 
is the structural parameter of the “susceptibility” of the 
medium to microshears, which depends on the nature of 
the intermolecular interaction and temperature; σ is the 
shear component of the stress tensor. Two critical values of 
the “susceptibility” parameter δ

*
, δc play the role similar to 

that of critical temperatures in the Ginzburg-Landau theory 
of phase transitions [9]. The kinetic equation for the shear 
parameter is written as
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where Γp is the kinetic coefficient. Transitions through the 
critical points δ

*
, δc are accompanied by the formation of 

collective modes of shear ensembles, which are of the nature 
of self-similar solutions. In the range of the structural 
susceptibility parameter δ

*
, δc, the self-similar solution 

has the form of an autosoliton mode, the wavelength 
and propagation velocity of which are determined by the 
dynamics of the “orientational” transition in the ensemble 
of shears (“spinodal decomposition” in the region of the 
thermodynamic potential metastability  — nonequilibrium 
free energy) [10 –12]:
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Solution (12) describes the autowave dynamics as a result 
of “spinodal decomposition” of the metastability region 
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during the formation of orientationally ordered ensemble of 
microshears at the wavelength Ls and the wave front velocity 
Vs. The dependence of the defect dynamics to the self-similar 
solution (12) reflects a global change in the symmetry in a 
condensed medium. It was shown in [6] that the existence of 
the scale Ls is indicative of the formation of one-dimensional 
topological object (considered in “string theory”) with a 
qualitatively new dynamics, which plays the role of the degree 
of freedom, triggering a new momentum transfer mechanism.

The relation determining the influence of shear effects 
on the “viscous” properties of the medium, was obtained in 
[8,13]

        � � �� �e pv
 ,   (13)

where e e G pv � � �( )
�  is the “viscous” component of strain 

rates; η is the dynamic viscosity of the liquid under normal 
conditions; ζ is the “viscosity” coefficient of the quasi-plastic 
shear.

Following (13), the effective viscosity of the medium with 
consideration for the shear effects at times t ~ τF>> η / G, can 
be represented as
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When the strain rates in the interval δc < δ < δ* are 
“subordinated” to the spectrum of autosoliton collective 
shear modes (12) at  � � p, , viscosity tends to the asymptotic 
value � �� a  (degeneration of the diffusion mechanism of 
momentum transfer). The established asymptotics, � �a �  
(ηa ≈103 Pa ∙ s) is apparently for strain rates � � � �10 104 6 1s  
and is the result of the formation of collective shear modes 
on the wave number scales kg ~1/ Ls in [2, 3,13]

3. Experimental study

Two types of experiments were carried out to study the 
mechanisms of momentum transfer and dissipation due to 
the formation of localized shear modes responsible for the 
quasi-plastic relaxation mechanism at times significantly 
exceeding the diffusion times in liquids.

The quasi-hydrodynamic mechanism of liquid flows was 
studied in [14,15] when estimating the relaxation times at the 
shock wave front. According to these studies, the relaxation 
times τ >10−5 s found for water and mercury are 6 orders of 
magnitude higher than the diffusion times τD estimated from 
the Einstein relation [4]

	 	 				τD  = Δ2 / 6Dsd ~10−11 s,  (15)

where ∆ is the distance between particles, Dsd is the self-
diffusion coefficient.

The experiment performed for this study was based on 
the registration of wave fronts by the Doppler interferometry 
method [16], which allowed us to study the relaxation 
mechanisms during the propagation of perturbations of the 
finite amplitude P0 in a condensed medium under impulse 
loading. The possibility of the quasi-plastic mechanism of 
momentum transfer, having the universal power-law nature 
for a wide class of materials [17 – 21] in the range of strain 
rates � � �105 1s ,  was studied for liquids (distilled water, 
transformer oil) under shock-wave loading using the method 
of electrical wire explosion and the method of an explosive 
generator [22, 23]). The wave profiles shown in Fig. 1a, of the 
free surface velocity were obtained at different distances from 
the site of the electrical wire explosion. They demonstrate 
the universal power-law quasi-plastic behavior ε*

.~ P0
3 2 

(Fig. 1b) on the wave front scale Ls and the dependence of the 
propagation velocity VS, on the amplitude of the wave pulse. 
The decrease in the wave front width Ls with an increase in 
the pulse amplitude P0 is consistent with the interpretation of 
kg as the “hardness” parameter of the transition [1]. The range 
of scales Ls corresponding to the power law can be interpreted 
in terms of the self-similar (autosoliton) solution (12) and is 
associated with the range of wave numbers k ~ Ls

−1, which 
determines the collective shear mode in the quasi-plastic 
mechanism of momentum transfer.

The universal power-law nature of the dependence of the 
strain rate on the pulse amplitude on the wavefront scale Ls 
reflects the “subordination” of the relaxation properties of 
the liquid to the autosoliton collective shear deformation 
mode in the range of wave numbers determined by the pulse 

         a              b
Fig.  1.  Wave profiles of free surface velocity in distilled water at different distances from the point of initiation of an electric explosion wire: 
1 — 8 mm, 2 — 11 mm, 3 — 18 mm, 4 — 25 mm (a); dependence of the strain rate ε*  on the wave front on the pulse amplitude P0 (b).
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amplitude. The scales of wave fronts are estimated using the 
rise times of the wave pulse tL: Ls = tL(K / ρ)1/2, where K is the 
bulk modulus of elasticity of the liquid. The dependences 
of the scales of wave fronts Ls on the wave pulse amplitude 
are shown for distilled water and transformer oil in Fig. 2. It 
should be noted that there is a sharp decrease in the scales 
Ls with an increase in the wave front velocity (pressure 
amplitude) for distilled water and relative constancy of the 
scales for transformer oil. This reflects the difference in 
widths of the wave number “gaps”, where the quasi-plastic 
mechanisms of momentum transfer are realized.

The second class of experiments involves recording of 
qualitative changes in the dissipative properties of liquids 
in intense shear flows at the values of strain rate in the 
boundary layers � � � �10 105 7 1s ,  which are close to the values 
at the front of the wave pulse generated by the electrical 
wire explosion, and high enough to realize a quasi-plastic 
momentum transfer mechanism [22]. An intense shear flow 
(hydraulic oil, dynamic viscosity η = 0.04 Pa ∙ s) was generated 
in a round channel with a diameter of 0.6 mm in the pressure 
gradient range ∇P ≈ 0.7 – 5 GPa / m (Fig. 3 a). Figure 3 b shows 
the mean frequency of events f recorded with the use of a 

photomultiplier versus the pressure gradient in the channel. 
This dependence demonstrates a sharp increase in the 
intensity of hydroluminescence at the threshold values of the 
strain rate of ~105 –106 1 / s, corresponding to the Reynolds 
number of ≈2.7 ∙103 and leading to qualitative changes in the 
dissipation mechanisms [24, 25].

A sharp increase in hydroluminescence can be explained 
by changes in the mechanism of momentum transfer and 
dissipation due to the appearance of collective quasi-plastic 
shear modes.

The threshold character of qualitative changes in 
dispersion and, as a consequence, dissipative properties, 
observed in the range of wave numbers k ~ Ls

−1, is similar 
to the effects of anomalous energy absorption (dissipation) 
in the vicinity of phase transition points [26, 27] during the 
formation of collective shear (autosoliton) modes in the 
critical region of the “spinodal metastability decomposition” 
[13], and is caused by a sharp increase in relaxation times.

4. Discussion of results

Reynolds appeared to be the first who noticed that the non-
Newtonian behavior of simple fluids in shear flow can be 
associated with a nonequilibrium viscoelastic response. This 
is found to be in agreement with the data demonstrating the 
asymptotic behavior of viscosity [14,15] at strain rates 
� � �105 1s and shear elasticity in liquids at frequencies 
ν ~105 Hz [6]. Following Frenkel, the above studies lead to 
the conclusion that in liquids, as condensed media, it is 
possible to realize a spectral range corresponding to the 
relaxation times τ	~10−5 s of the coordinated microshear of 
molecular groups under the action of elastic shear stresses 
[4]. The collective effects of such interaction are similar to 
the scenarios of the formation of localized shear modes 
during plastic deformation [7]. It is also found that the 
dynamics of these modes is determined by self-similar 
solutions of the autosoliton nature. The self-similar solution 
relates the scale of the wave front Ls to the velocity of its 
propagation and the value of the shear strain jump in the 
“orientational transition” in the ensemble of microshears 
[10]. The self-similar character of the formation of localizled 

Fig.  2.  Dependences of the wave front scales Ls on the amplitude of 
the wave pulse P0 for distilled water (○) and transformer oil (×).

    a               b
Fig.  3.  Image of developed hydroluminescence in the channel at the inlet pressure gradient ≈5 GPa / m (a), the dependence of the mean 
frequency of events f recorded by the photomultiplier on the pressure gradient ∇P in the channel (b).
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shear regions in liquids is confirmed by shock wave loading 
experiments on liquids showing a universal power law 
dependence of the strain rate at the wave front on the 
pressure amplitude at characteristic loading times τ	~10−5 s. 
The spectrum of the wave front scales Ls corresponding to 
the universal power law dependence determines the range of 
wave numbers k ~ Ls

−1 at the boundary of which the transition 
from the diffusion mechanism of momentum transfer to the 
mechanism of localized quasi-plastic shear takes place. The 
“critical” nature of such transition, which manifests itself in 
the formation of collective shear modes, is accompanied by a 
sharp change in the dissipative properties of the liquid, 
which appear as “hydroluminescence” effect as soon as the 
strain rates in the shear flow reach the threshold values 
� ~105 1s� . The development of instability leading to global 
instability of the flow [25] can be related to the appearance of 
quasi-plastic collective shear modes at the Reynolds numbers 
≈2.7 ∙103. “Subordination” of strain rates to the spectrum of 
collective shear modes on the wave number scale kg ~ Ls

−1 
determines the asymptotic value of the quasi-plastic shear 
viscosity η ≈103  Pa ∙ s, which was found for strain rates 
� � � �10 104 6 1s  [14].
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