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Abstract—Stochastic processes stand as a versatile tool for 

modeling and understanding random phenomena. These 

processes describe system evolution while taking into account 

randomness and uncertainty. Nowadays, stochastic processes 

find application in a variety of domains, such as modeling 

financial markets, monitoring manufacturing procedures and 

predicting disease spread. This paper proposes a sequential 

procedure for testing hypotheses concerning the correlational 

structure of random fields and their trends. 
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I. INTRODUCTION 

In the realm of applied mathematics, the use of random 
processes leads to solving challenges in a variety of industries, 
i.e. telecommunications, computer science, biotechnology, 
health, risk management, etc. In pursuit of modeling and 
understanding complex phenomena, the role of stochastic 
processes has been foundational. Still, the classical definition 
of random processes limits the dimension of parameter space 
to one. Usually, this parameter represents time. However, 
when we encounter spatial or spatial-temporal dependencies -
-- e.g. geology/geostatistics --- we require parameters of 
higher dimensions. Random fields generalize the notion of 
stochastic processes. In addition, it allows to capture of spatial 
dependencies. Moreover, in a data-driven era where 
information is often gathered across a variety of spatial points, 
random fields act as a framework capable of accommodating 
the intricacies of the collected data as well as representing 
inherited relationships between these data points. 

There are two fundamental approaches to statistical 
inference: classical hypothesis testing and sequential analysis. 
In the classical approach,  the dataset size is known in 
advance. This method offers a straightforward procedure for 
hypothesis testing. However, it may not be the most efficient 
technique when resources are limited. On the contrary, 
sequential statistical analysis is a dynamic and adaptive 
procedure, in which the data is collected only when necessary. 
This feature makes it effective since the number of 
observations is a random variable itself.  

Random fields pose significant challenges in the realm of 
statistical inference due to their complex spatial correlational 
structure. Unlike i.i.d. random variables, random fields exhibit 
spatial correlations. meaning that nearby values are 
interdependent. The interdependence violates one of the 
fundamental assumptions of statistical tests. In this paper, we 
address the problem of sequential hypothesis testing 
concerning Gaussian Random Fields with trends. 

II. MODEL 

A Gaussian Random Field (GRF) with a trend refers to a 
spatial or spatiotemporal random field where the primary 

variation is modeled using a trend component, typically a 
deterministic function, in addition to a Gaussian random 
component. This combination allows for the modeling of 
spatial or temporal data that exhibits both systematic trends or 
patterns and random fluctuations. 

The trend component represents the underlying, often non-
random, behavior or structure in the data. It is typically 
specified based on prior knowledge or domain expertise and 
can take various functional forms, such as linear, quadratic, 
exponential, or more complex functions, depending on the 
nature of the trend in the data. The trend component helps 
capture the overall behavior of the data and provides a way to 
model long-term or large-scale patterns. 

The Gaussian random component, on the other hand, 
introduces stochastic variability or noise into the model. This 
component is a Gaussian random field and represents the 
smaller-scale, random fluctuations that cannot be accounted 
for by the trend alone. The Gaussian assumption is often made 
for simplicity and mathematical tractability. 

GRFs with trends are commonly used in various fields, 
including geostatistics, environmental science, and spatial 
epidemiology, to model data with spatial or temporal 
dependencies and to separate deterministic trends from 
random variability. This modeling approach allows 
researchers to better understand and analyze complex datasets 
that exhibit both structured patterns and random noise, 
enabling more accurate predictions and statistical inference. 

Let 𝑥𝑡 be an observation of a random field with a trend, 
such that: 

𝑥𝑡 = 𝑓(𝑡) + 𝜀𝑡 

where 𝑓(𝑡) is a deterministic function representing the non-
random behavior of a field, 𝜀𝑡  a Gaussian random field with 
zero mean. There are two simple hypotheses: null hypothesis  
𝐻0, alternative  𝐻1. With 𝜑𝑖(𝑡) lets denote our assumption for 
the trend function. In addition, we can formulate a hypothesis 
for the correlational structure of Gaussian random field 𝜀𝑡. To 
illustrate, let 𝜌(𝑡) denote the correlation function of 𝜀𝑡 (𝑡 ∈
ℝ2), then a sample hypothesis can be formulated as: 

𝜌(𝑡) = exp{−(
𝜏1
2

𝜃1
2 +

𝜏2
2

𝜃2
2)} 

where 𝜃1, 𝜃2  represent length of correlational dependencies 
along the corresponding axis. 

III. SEQUENTIAL PROBABILITY RATIO TEST 

Sequential Probability Ratio Tests (SPRT) are a class of 
statistical tests used for sequential decision-making. These 
tests are designed to analyze data as it is collected in a 
sequential manner, allowing for the early termination of data 
collection when there is sufficient evidence to make a 
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decision[1]. SPRTs are particularly valuable in situations 
where resources or time are limited, as they can lead to more 
efficient data collection. 

Wald continues to demonstrate that the SPRT is the most 
powerful test with a given sample size. Conversely, the SPRT 
also requires a smaller sample size to achieve a given a. This 
smaller sample size can be referred to as a sample size savings. 
Wald and Wolfowitz provide proof of the optimal 
characteristic of the SPRT in their paper "Optimum Character 
of the Sequential Probability Ratio Test"[2].This proof shows 
the generalization that of all tests with the same power, the 
sequential probability ratio test requires on average the fewest 
observations. This result is imperative in its selection as the 
optimal test method and validates the statement that the SPRT 
provides significant savings over other hypothesis testing 
methods. 

For any positive integer 𝑚, let 𝑝𝑖𝑚 denote the probability 
that the sample was obtained under hypothesis 𝐻𝑖 , ⅈ ∈ {0,1}. 
The sequential probability ratio test for testing simple 
hypotheses is defined as follows: Two positive thresholds 𝐴, 𝐵 
are chosen (𝐵 < 𝐴). At every step 𝑚 of the procedure, the 

probability ratio 
𝑝1𝑚

𝑝0𝑚
 is computed. The ratio is used to make a 

decision whether or not to stop the procedure: 
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The threshold 𝐴, 𝐵 are determined so that the test will have 
desired strength ( 𝛼, 𝛽) , where 𝛼, 𝛽  are respectively 
probabilities of first and second type. The exact determination 
of the values 𝐴, 𝐵 is a complex task. Thus, in practice, we put 

𝐴 =  (1 − 𝛽)/𝛼 , B = β/(1 − α) . Wald showed that the 
resulting probabilities of the first and second kind (α′, β′) 
satisfy the following inequality [1]: 

𝛼′ + 𝛽′ ≤ 𝛼 + 𝛽 

Since we are working with Gaussian Random Fields, the 
vector containing observed values follows the multivariate 
normal distribution: 

𝑝𝑖𝑚 =

𝑒𝑥𝑝 (−
1
2
(𝑥(𝑚) − μ𝑖)

𝑇
Σ𝑖
−1(𝑥(𝑚) − μ𝑖))

√(2π)𝑘|Σ𝑖|
, ⅈ ∈ {0,1} 

In order to calculate the covariance matrix Σi we use the 
corresponding correlation function to the ⅈ-th hypothesis. The 
mean is calculated using 𝜑𝑖 since we assumed that the random 
field 𝜀𝑡 has zero mean. 

IV. COMPUTER MODELING 

We encountered several challenges associated with 
modeling random fields. Random fields inherently exhibit 
spatial or spatiotemporal dependencies, which necessitate the 
careful specification of covariance structures to capture the 
underlying spatial relationships. Additionally, the high 
dimensionality of random field data can strain computational 
resources, making it essential to explore dimension reduction 
techniques. Addressing measurement error, and uncertainty, 
and dealing with irregularly sampled or sparse data further 
complicates the modeling process. Successfully tackling these 
challenges is fundamental to advancing our understanding of 
random fields and improving the reliability of statistical 
hypothesis testing within this domain. 

In the context of spatial-statistical research and hypothesis 
testing of random fields, the GSTools library emerges as a 
valuable tool for modeling complex spatial data. This 
framework allows a user-friendly interface for spatial data 
modeling. A pivotal step in this process entails defining a 
covariance model, a critical component capturing the spatial 
structure of the data. There are a variety of predefined models, 
such as Gaussian, exponential, cubic, and circular covariance 
models. With the covariance model established, the 
subsequent phase involves the creation of a random field 
object, specifying the spatial grid or mesh for field generation.  

Using Python visualization libraries, we can create 
informative plots of generated random fields. We used two 
types of plots: heatmap and 3D plot. The heat map is used to 
visualize random fields et. Since we assumed zero mean, we 

 

Fig. 2. Example of a random field with Trend. 

 

Fig. 1 Example of a random field visualization. 
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can perform side by side comparison of the correlational 
structure. (“Fig. 1”) Whereas, 3D plots better represent 
random fields with trends. (“Fig. 2”) 

By definition, random fields are infinite, however, 
modeling an infinite object of a computer is a challenging task. 
Therefore, in this paper, we used finite random fields for the 
analysis of the proposed procedure. To generate a new 
observation, we sampled two numbers for the corresponding 
uniform distribution and then took the value of the random 
field modeled with GSTools.  

To validate the procedure, we calculated the probabilities 
of error.  Calculating probabilities of error is a fundamental 
concept in statistics, especially in the context of hypothesis 
testing. We iterated the procedure on the same set of 
hypotheses. After all the data was collected, we calculated the 
error probabilities of the first and second types.  

V. MODELING RESULTS 

Let 𝑁𝑖𝑡𝑒𝑟  be number of iterations of the SPRT needed to 
calculate 𝛼∗, 𝛽∗ observed error probabilities of type 1, type 2 
respectively. We proceed by defining the hypotheses and 
target error probabilities in table 1. 

TABLE I.  SPRT PARAMETERS 

Hypotheses parameters 

# Variance Correlation Function Trend Function 

Null Hypothesis 

1 1 exp(−(𝜏2 ∖ 5)) 0 

2 5 exp(−(𝜏2 ∖ 15)) −0.05𝑡1 + 0.05𝑡2 

3 3 exp(−(𝜏 ∖ 5)) −0.05𝑡1 + 0.05𝑡2 

4 3 exp(−(𝜏 ∖ 5)) 𝑡1 + 0.05𝑡2 

Alternative Hypothesis 

1 1 exp(−(𝜏2 ∖ 25)) 0 

2 15 exp(−(𝜏2 ∖ 5)) 0 

3 3 exp(−(𝜏 ∖ 5)) −0.1𝑡1 + 0.05𝑡2 

4 3 exp(−(𝜏 ∖ 5)) −0.1𝑡1 + 0.05𝑡2 

Test Parameters 

# 𝑵𝒊𝒕𝒆𝒓 𝜶, Type I Error 𝜷, Type II Error 

1 1000 0.01 0.01 

2 1000 0.01 0.01 

3 10000 0.01 0.1 

4 10000 0.2 0.2 

The main metrics we are interested in are the error 
probabilities and the average sample number.t The average 
sample number (ASN) is a critical concept that measures the 
expected number of observations or samples required to reach 
a decision or stopping point in the test. ASN is essential in 
sequential analysis since it helps optimize the use of resources, 
such as time, and illustrates cost and time efficiency. 

We run the proposed sequential probability ration test on 
11th Gen Intel(R) i5-1135G7 2.4 GHz with 16 GB of RAM. 
The results of the experiments are shown in table 2. 

The first experiment demonstrates that the proposed test 
works on random fields without trend. The experiments 
illustrate that the procedure can successfully distinguish 

between fields with and without trends. The third example 
shows that we can test hypotheses for two Gaussian Random 
Fields with trend. Finally, yet importantly, the fourth 
experiment demonstrates that there is indeed a dependency 
between the observed errors and theoretical.  

The results show that the largest sample size is needed in 
the case of stationary fields. It is expected since the trend 
provides additional information to the test.  Also, worth 
noticing that the decision rule performs better than the target 
error rates since the classical sequential probability ratio test 
was proposed for independent observations. 

VI. CONCLUSION 

In summary, this research paper has aimed to develop a 
sequential procedure for hypothesis testing of Gaussian 
random fields. One of the most notable outcomes of this study 
is a sequential decision rule suitable for solving real-world 
problems. This procedure has the potential to be applied to a 
vast variety of applied problems concerning spatial-temporal 
dependencies.  

It is crucial to acknowledge the limitations of this research. 
The described statistical test only works for Gaussian Random 
Fields. Moreover, the computer simulation is limited to finite 
Random Fields.  These limitations provide opportunities for 
future research to delve deeper into this area and address these 
gaps. 

In conclusion, this research contributes to the existing 
body of knowledge by defining an easy-to-implement 
procedure of hypothesis testing for Gaussian Random Fields. 
The insights gained from this study can be valuable for 
geologists and others, working with spatial data. They provide 
a foundation for further exploration in this field. As we move 
forward, it is essential to continue exploring statistical tests for 
non-Gaussian Random Fields. 

Ultimately, this research adds to the understanding of the 
random fields and offers a valuable resource for researchers, 
practitioners, and policymakers interested in statistical 
inference from spatial data. 
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TABLE II. SPRT RESULTS 

Results 

# ASN 𝜶∗, 𝑻𝒚𝒑𝒆𝑰𝑬𝒓𝒓𝒐𝒓 𝜷∗, 𝑻𝒚𝒑𝒆𝑰𝑰𝑬𝒓𝒓𝒐𝒓 

1 11.1 0.01 0.0 

2 7.14 0.0 0.003 

3 5.23 0.017 0.0 

4 3.29 0.112 0.0 

 


