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Abstract—Content creators grapple with the challenge of 

predicting if their investments will lead to increased viewership 

and audience growth on social media platforms. By employing 

advanced techniques in video encoding and natural language 

processing, we construct a powerful multimodal ensemble 

model for accurately predicting video success. Our preliminary 

results demonstrate the model’s effectiveness in predicting video 

virality 
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I. INTRODUCTION 

The digital content creation landscape keeps evolving, 
challenging creators to predict video success and audience 
growth. Opaque algorithms and unpredictable interactions on 
platforms like TikTok complicate matters. Diverse 
approaches and models have been explored to predict video 
success and understand content virality. 

To address YouTube viewership challenges, Liu et al. [15] 
proposed a Precise Wide-and-Deep Learning model, 
accurately predicting viewership while interpreting feature 
effects. In the context of TikTok, researchers [7] introduced a 
deep learning model to predict user participation in challenges 
by learning latent user and challenge representations. Salvador 
et al. [3] used attention mechanisms to improve video 
recognition models for human action recognition. A multi-
modal fusion framework [5] integrated different modalities 
for effective short video understanding and recommendation. 
To describe videos, a deep neural network with multi-modal 
fusion [6] learned joint representations for video description 
tasks. Predicting Instagram popularity involved convolutional 
neural networks and long short-term memory networks [14], 
exploring spatial and temporal information. Another work 
used neural networks and regression analysis [9] to predict 
popularity by comparing aesthetics and social metadata. 
While these contributions are significant, the challenge of 
effectively integrating diverse modalities, like visual and 
audio data, remains for multi-modal fusion research. Striking 
the right balance and seamless integration between modalities 
are crucial for successful fusion techniques. 

Two primary fusion approaches in multimodal learning 
are early fusion, which concatenates features at the input level, 
and late fusion, which aggregates predictions at the decision 
level [12]. Performance comparison between these 
approaches depends on several factors such as multimodal 
data characteristics, task complexity, interdependence 
between modalities, feature quality, network architecture, 
dataset size, and labeled data availability [12, 4, 2, 13]. As 
there is no universally superior fusion approach, each method 

can be more effective in specific scenarios. This study adopts 
the late fusion approach, considering unique project factors, 
as it effectively leverages modality strengths, capturing 
complementary information and improving performance. 

Our study aims to predict video virality using a 
multimodal ensemble model. Beyond predicting video content 
creators’ success, this project validates the use of multimodal 
approaches, surpassing traditional unimodal methods. 
Validating this approach emphasizes the potential for 
enhancing predictive ability by analyzing multiple streaming 
modalities. Our work showcases the promise of the 
multimodal era, demonstrating how leveraging diverse data 
modalities can lead to innovative solutions and deeper 
insights.. 

II. APPROACH 

2.1 Data collection 

The data collection process involved scraping video data 
from TikTok using a custom-built Selenium scraper running 
on a Chromium browser. The scraper was designed to 
randomly collect videos across various hashtag topics, 
ensuring a diverse representation of content. The selected 
hashtag topics included Sports, Dance, Entertainment, 
Comedy and Drama, Autos, Fashion, Lifestyle, Pets and 
Nature, Relationships, Society, Informative, and Music. This 
approach aimed to capture a wide range of video content to 
ensure the model’s generalizability. In total, the data 
collection effort yielded approximately 1,100 videos, each in 
.mp4 format, resulting in a substantial dataset with a total size 
of 6.8 GB. To facilitate further analysis and model training, 
each video was assigned a unique video ID tag for reference 
and data mapping. Alongside the video files, the dataset also 
includes JSON data containing relevant metadata for each 
video, such as the video ID tag and its corresponding TikTok 
URL. Additionally, the video view count on TikTok was 
recorded as an essential metric for evaluating video creator 
success 

First, confirm that you have the correct template for your 
paper size. This template has been tailored for output on the 
A4 paper size. If you are using US letter-sized paper, please 
close this file and download the Microsoft Word, Letter file. 

2.2 Data Preprocessing 

The template is used to format your paper and style the 
text. All margins, column widths, line spaces, and text fonts 
are prescribed; please do not alter them. You may note 
peculiarities. For example, the head margin in this template 
measures proportionately more than is customary. This 
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measurement and others are deliberate, using specifications 
that anticipate your paper as one part of the entire proceedings, 
and not as an independent document. Please do not revise any 
of the current designations. 

2.2.1 Visual Preprocessing 

The visuals for the video are extracted using TorchVision, 
converting the raw .mp4 format into tensors. The tensors are 
sized as (Channels, Frames, Height, Width). Here, ’Channels’ 
represents RGB (3), ’Frames’ varies greatly depending on the 
length of the video; some videos are as short as a few seconds, 
some are as long as 10 minutes. However, with a frame rate of 
60fps, that can be 

60 FPS · 60 Seconds · 10 Minutes = 3,600frames 

For ’Height’ and ’Width’, most videos are 1024 by 576 
pixels respectively, according to mobile application standards. 
Nevertheless, there are also various different heights and 
widths as well. 

3(C) · 3600(D) · 1080(H) · 576(W) = 6,718,464,000 

The tensor size shown is a single input tensor. With the 
inclusion of batches leading to further increases in the tensor 
size. These tensors were too large to train on our accessible 
hardware. Therefore, we strategized to use multiple 
techniques to reduce the computational cost by decreasing the 
amount of information. We explored several downsampling 
techniques such as trimming the video length, averaging the 
tensors, skipping frames, and rescaling the video height and 
width. After several attempts, we chose to skip frames and 
rescale the pixels ad it made it feasible to run on our available 
hardware. For other size format videos, we adjusted the height 
and width to accommodate the mobile aspect ratio to a 
standard format of 1024 by 574, we first rescaled to this size. 
Then, filled the remaining values with 0. This approach 
created more uniformity for the model, as most models only 
accept input with a fixed window size. 

2.2.2  Audio Preprocessing 

We extracted audio from the video datasets using FFmpeg. 
The extracted audio is then converted to .wav format, which 
is solely for audio, and saved to an audio directory with an ID 
tag as a naming convention. This setup was designed for the 
audio embedding portion of this project. We leverage the 
Whisper framework to transcribe audio into sentences and 
obtain the corresponding word embeddings. 

2.2.3  Target Values 

The target labels are scraped metadata representing the 
counts of video views. However, these labels are rounded to 
’30.58M’ or ’75.8K’, etc. They are not perfectly decimal 
metrics, but they should be sufficient for our needs. We clean 
up these metrics to a floating point format in thousands (K), 
for example ’30.3’, to unify the target format before we feed 
it into our model. The targets can range from 0 to 10,000s. 
However, in later experiments, we decided to standard-
normalize these metrics, discussed in Section 3.2.2. 

2.3 Multimodal Architecture 

Our approach involves data preparation and multimodal 
deep regression modeling. The data preparation process 
includes scraping video data from TikTok, audio extraction, 
and meticulous organization of visual tensors for efficient 
integration into the model. For audio analysis, we leverage the 
open-source Whisper model to transcribe audio content and 

obtain audio embeddings that capture the semantic meaning 
of the audio. The heart of our model lies in the visual 
embeddings generated through an unsupervised pretraining 
process using a ConvLSTM Autoencoder. This process 
encodes the context of the video into compact and informative 
embeddings that retain essential spatial and temporal features. 
Subsequently, the visual and audio embeddings are 
concatenated and fed into a Transformer-based regression 
model for multimodal analysis. The late fusion technique 
combines the visual and audio data, enabling the model to 
learn the semantic and nonlinear relationships between the 
two modalities. These relationships are important for 
understanding what makes a video successful. The 
Transformer model, with its self-attention layers and 
feedforward neural networks, captures complex patterns and 
relationships within the data. 

The video is first broken down into visual and audio tracks, 
with our primary focus on the video visual. The video visual 
will undergo an autoencoder process, utilizing a convolution-
based network architecture, ConvLSTM Autoencoder, to 
unsupervised pre-training from scratch. This process encodes 
the context of the video into embedding vectors. Subsequently 
for the audio, we leverage a pretrained model, the open-source 
Whisper, to create a transcript for the audio, supplementing 
the project. The visual embeddings and audio embeddings are 
then extracted from the visual and audio branches, 
respectively. The embeddings are then concatenated and input 
into a Transformer-based regression model. 

2.3.1  Visual Embedding 

To generate compact and informative visual embeddings, 
we employ an unsupervised pretraining method using a 
ConvLSTM Autoencoder. The ConvLSTM Autoencoder is 
introduced by Shi et al.[11] and Nielsen [8]. This architecture 
comprises a series of ConvLSTM Cells, which are a 
combination of Convolutional and Long Short-Term Memory 
(LSTM) layers. The ConvLSTM Cells acts both as an encoder 
and a decoder, capturing the spatial features via the 
convolutional layers and temporal dependencies through the 
LSTM layers. Finally, the decoder passes through 3D 
convolutional layers to reconstruct the sequences of visuals 
(video tensors). This enables the Autoencoder to retain 
important contextual information from the video data, while 
also reducing dimensionality to create compact embeddings at 
the encoder output. During training, the Autoencoder takes 
video frames as input and tries to reconstruct them at the 
output. The difference between the original and reconstructed 
frames is quantified using the Mean Squared Error (MSE) loss 
function. Through backpropagation, the Autoencoder adjusts 
its weights and biases to minimize this reconstruction error, 
thus learning to capture meaningful patterns in the video data. 
The trained Autoencoder is evaluated thoroughly over 
multiple epochs to ensure that it learns robust and meaningful 
embeddings. The embeddings generated by the Autoencoder 
represent the visual context of the video. These embeddings 
condense the raw visual data into a more informative and 
compact representation, which is crucial for downstream 
modality fusion. 

2.3.2  Audio Speech Embedding 

Audio speech embeddings are obtained using the 
opensource Whisper model through unsupervised pretraining. 
Whisper is a powerful automatic speech recognition (ASR) 
system developed by OpenAI to convert spoken language into 
text. First, the audio is extracted from the video dataset, and 
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then Whisper transcribes the audio dialog, producing textual 
transcripts that capture essential information from the spoken 
content. These textual outputs serve as audio embeddings, 
effectively encapsulating the semantic meaning and 
characteristics of the audio. Utilizing the preexisting Whisper 
model for audio embedding generation offers several 
advantages. The Whisper model is already trained on 
extensive speech data, making it effective in understanding 
diverse spoken language patterns. This saves the effort and 
time required to train an ASR system from scratch, making the 
process more efficient [10]. Subsequently, the resulting audio 
embeddings play a pivotal role in audio speech analysis. The 
audio speech embeddings can enrich context comprehension 
in downstream modals.  

2.3.3  Dual Transformer-based Regression 

A Transformer-based ensemble regression is employed to 
perform multimodal deep regression by combining visual and 
audio data using a late fusion technique. The ensemble model 
consists of two primary components: a Transformer model for 
visual embedding and another Transformer model for audio 
embedding. Both models exploit the Transformer architecture, 
a series of Transformer encoder blocks, which heavily relies 
on the self-attention mechanism [1]. These models accept 
visual and audio embeddings as inputs respectively. They 
process these inputs using the Transformer to capture complex 
patterns and relationships within the data. Given the unique 
shapes and sizes of the visual and audio embeddings, it’s 
challenging to consolidate the information into a single 
transformer network. Therefore, we introduce a dual 
transformer network. This configuration accommodates each 
modality, allowing the network to learn each output 
separately, and subsequently discover the relationship with the 
regression problem. 

2.4 Loss Function 

The regression models and auto-encoder are both trained 
using the MSE loss function, which serves as a measure of the 
discrepancy between the model’s predicted values and the 
actual ground truth value. The primary objective is to 
minimize this while the auto-encoder will reduce the 
reconstructed pixel metric loss, the Tranformer-based 
regression will reduce loss from prediction to truth success 
metrics. The MSE loss function calculates the average squared 
difference between the predicted values and the actual values. 
By squaring the differences, it penalizes larger errors more 
severely, emphasizing the importance of accurate predictions 
across all data points. MSE loss functions are defined as: 
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Beside MSE, we later also introduce Mean Absolute Error 
(MAE) to our model, since it does not heavily penalize large 

prediction errors, which is beneficial in cases where outliers 
in the data may cause excessive influence on the model 
training, we later discuss this further in Section 3.2.3 . MAE 
loss functions are defined as: 
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Where n is the total number of samples in the dataset. yi 
represents the actual value of the success metric for the ith 
batch of videos. yˆi represents the predicted value of the 
success metric or pixel values for the ith batch of videos. 

2.5 Implementation and Hardware 

The models primarily utilized the PyTorch library, with 
Torch-vision and Scikit-learn employed for preprocessing. 
We also forked the Whisper project for audio transcript 
processing and used a forked version of Swin Transformer 3D 
from haofanwang’s repository. Training implementations 
were executed on local machines equipped with NVIDIA 
RTX 2070 Super/3080 GPUs, using CUDA. Initially, we 
faced some challenges due to the size of the tensors, as the 
GPUs had limited VRAM capacities. Consequently, some 
early training attempts failed due to exceeding VRAM 
memory. In the later phases, we primarily used CPUs in 
conjunction with physical RAM, and we also allocated 
additional virtual memory to accommodate the size of the 
visual tensors. The code for this project can be found in the 
Multimodal-Deep-Regression GitHub repository. The model 
and functional modules were developed using Python, and the 
various experiments were set up using Jupyter Lab/Notebook. 
Please refer to ’The Multimodal Final.ipynb’ for the setup 
guide and detailed installation instructions to rerun the 
experiments. The required dependencies for this project can 
be found in the requirements.txt file of the GitHub repository. 

III. TRAINING AND EXPERIMENTS 

In the experiment, we first pretrained the Convolutional 
LSTM Autoencoder to an optimal hyperparameter setting and 
stored the training weight. Then we applied the Transformer 
ensemble model along with Whisper embedding input for 
regression prediction. As this is a regression prediction task, 
we evaluated the result using the common MSE metric. Since 
this is a new dataset, there isn’t a preestablished performance 
benchmark to reference. Therefore, we decided to compare 
with two baseline models. The first is a vanilla 3D convolution 
model, and the second is a state-ofthe-art pretrained SWIN-
Transformer 3D, as referenced in Swin Transformer: 
Hierarchical Vision Transformer using 

Shifted Windows. The SWIN-Transformer is developed 
by Microsoft. The Swin Transformer utilizes shifted windows 
to adapt the transformer architecture for computer vision use 
cases [9]. The key design element for the Swin Transformer is 
the shifting windows between consecutive self-attention 
layers bridging between the layers which connects them [9]. 
Furthermore, we explored an alternative approach by 
narrowing down the regression task to classification using 
quantile ranges. The video data was split into a training set and 
a validation set, with 800 videos in the training set and 200 
videos in the validation set. Lastly, we held out 100 videos in 
a separate set for final testing. 

 

 

Fig.1. The multimodal model architecture 

https://github.com/haofanwang/video-swin-transformer-pytorch
https://github.com/haofanwang/video-swin-transformer-pytorch
https://github.com/GiggleSamurai/Multimodal-Deep-Regression
https://github.com/GiggleSamurai/Multimodal-Deep-Regression
https://github.com/GiggleSamurai/Multimodal-Deep-Regression
https://github.com/GiggleSamurai/Multimodal-Deep-Regression/blob/main/requirements.txt
https://arxiv.org/pdf/2103.14030.pdf
https://arxiv.org/pdf/2103.14030.pdf
https://arxiv.org/pdf/2103.14030.pdf
https://arxiv.org/pdf/2103.14030.pdf
https://github.com/microsoft/Swin-Transformer
https://github.com/microsoft/Swin-Transformer
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3.1 Convolutional LSTM Autoencoder 

The initial phase of the experiments focuses on training the 
Convolutional LSTM Autoencoder, a crucial component 
responsible for learning a compact and meaningful 
representation of the input video data. The Autoencoder 
follows an unsupervised learning approach, with the primary 
objective of reconstructing the original input from the learned 
latent space representation. The following key parameters and 
settings are employed during this training phase: Before 
training, the video data undergoes preprocessing steps to 
prepare it for the model. The ’Frame Skip’ parameter is 
utilized to determine how many frames to skip during the 
preprocessing stage, effectively reducing the temporal depth 
of the video. Additionally, the ’Shrink’ parameter is applied 
to scale down the resolution of each frame, resulting in a 
reduced (Height x Width) dimension. Frame skipping and 
shrinking were two techniques we chose to reduce the 
computational and storage requirements while maintaining 
essential information. We were careful about choosing the 
degree of shrinkage and number of frames to skip given that 
too high of either might lead to a loss of important visual 
details and temporal information. We decided on shrinking by 
a factor of 8. Although this resulted in significantly reduced 
frame clarity, subjects within the frames remained 
identifiable. The number of frames to skip was set to 200, 
which was feasible to run experiments without each epoch 
taking a significant amount of time and computational 
memory resources. 

3.1.1 Handling Sequential Visual Tensors 

The input tensor size fed to the model after processing is 
(Batch, Channels, Frames, Height, Width), where ’Batch’ 
refers to the size of the training batches, ’Channels’ represents 
RGB (3), ’Frames’ varies greatly depending on the length of 
the video, and ’Height’ and ’Width’, after preprocessing, are 
1024 by 576 respectively. Inserting video sequences of 
various depths into the model presents a challenge because 
most CNN models are not designed to account for varying 
depths. To address this, we have implemented several 
techniques, including fixed size padding, max sequence batch, 
and average pooling techniques. First, the most 
straightforward method is to pad all tensors to a fixed depth 
size, using the maximum depth from the dataset and padding 
the shorter ones with zeros. Second, we can handle this at the 
batch level, retaining the varying depths as long as the model 
design can manage variable sequences, such as with LSTM 
layers. Third, we can use average pooling techniques to 
average out to a fixed size output. However, this is less than 
ideal as it may lead to loss of some temporal information. In 
our ConvLSTM model, we primarily use the max sequence 
batch technique, although we also utilize other methods 
depending on the architecture design throughout the project. 

3.1.2 Convolutional Normalization 

In this experiment, we utilized normalization, which 
reduced the original pixel value range from 0 to 255 down to 
a range of 0 to 1 using the Min-Max scaler. However, after a 
few trials, we observed a noticeable reduction in the speed of 
loss reduction from each epoch. We found that normalization 
in the ConvLSTM Autoencoder resulted in higher overall loss 
compared to trials that did not use normalization. We suspect 
that the cause of this phenomenon might be due to the 
sensitivity of the values during training introduced by 
normalization, which may require further adjustments in 
learning rate. After comparing results, we decided to use non-

normalized visual tensors for the ConvAutoencoder since it 
yielded significantly better results in fewer epochs. 

3.2 Multimodal Ensemble Model 

The second part of the experiments involves training the 
Ensemble Model, a more complex architecture that combines 
the outputs from the Visual Transformer and the Audio 
Transformer with the learned visual and audio embeddings 
from the pre-trained Convolutional LSTM Autoencoder. The 
Ensemble Model is designed to effectively fuse information 
from both visual and audio modalities and predict the output 
values. The parameters and settings applied during this 
training phase can be found in Table 1. 

In addition to the visuals, the Ensemble Model requires 
input from the audio modality. The ’extract audio’ function is 
called to extract audio from the video dataset and saves it in 
.wav format. Subsequently, the ’extract embeddings’ function 
is used to transcribe the audio dialogue and extract Low-Level 
Modulation Spectrogram (LLMs) embeddings from the audio 
files. These LLMs embeddings are crucial for training the 
Audio Transformer within the Ensemble Model. The sizes of 
the audio tensors are output as [1, 7, S, 512], where ”S” 
represents a variable-length dimension that can range from 1 
to several thousands. In order to reduce the computational 
intensity of the model, an average pooling technique was 
deployed to reduce the dimension of S to 1, while keeping the 
other dimensions as originally specified before input to the 
transformer. While this might result in some loss of temporal 
information regarding sub-parts in speech, we are more 
interested in the global wording context to aid our model 
prediction. 

3.2.1 Dual Transformer Late Fusion 

The Ensemble Model consists of two transformer-based 
sub-models: the Visual Transformer and the Audio 
Transformer. Both sub-models share common hyper-
parameters, including the number of attention heads, hidden 
dimension, and the number of transformer layers. Specifically, 
the ’Number of Attention Heads’ is set to 4, providing the 
models with multiple attention mechanisms to focus on 
relevant visual and audio features. The ’Hidden Dimension’ is 
set to 32, representing the size of the hidden layer in each 
transformer. Finally, the ’Number of Transformer Layers’ is 
set to 2, determining the depth and number Transformer 
encoder blocks [1] of the transformer-based architectures. 

Throughout training, the losses on both the training and 
validation sets are recorded to assess the Ensemble Model’s 
performance. The ensemble transformer regressor model has 
a total of 836,484,738 trainable parameters. 

3.2.2 Standard Normal Scalar 

The nature of this problem made it difficult to generate 
accurate predictions. Initially, the regression model seemed to 
predict a constant result around the training mean, leading us 
to suspect that the model was tending to underfit the problem 
space. Later, we introduced standard normalization to the 
target values. Originally, these target values could range 
between 0 to 10,000s. The standard normalization not only 
shortened our training time of the Transformer regression 
model, but also produced results with better variations, closely 
resembling the high and low values in the validation set. 
Consequently, we observed improved performance in terms of 
reduced MSE loss. 
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3.2.3 Impact of Outliers on MSE and MAE 

As mentioned above, we used MAE as part of our loss 
function. Initially, we only deployed the common regression 
metric MSE as our main loss function. After a few trials, we 
observed a pattern where MSE was predicting higher values 
than most of the targets, seen in Figure 2. 

 

 Fig. 2.  MSE loss function versus MAE loss function 

Since there were a few outliers with high amounts of video 
views, the norm of the other errors were made insignificant 
when MSE squared the loss. However, these outliers didn’t 
appear often. When we switched to MAE, we saw significant 
improvement in generalization, surprisingly even when we 
evaluated using MSE for both the validation set and the 
holdout set. Thus, we implemented MAE loss as part of our 
strategy. 

IV. RESULTS 

4.1  Convolutional LSTM Autoencoder Results 

Initially, we set our Convolutional LSTM Autoencoder 
with increasingly higher hyperparameters, hoping that it could 
produce better results. After some trials, we realized that using 
a smaller model by reducing the hidden size over a high 
number of epochs was extremely effective in training our 
ConvLSTM Autoencoder. The total trainable parameters of 
this model is 1,041,859. Notably, the model showed a 
considerable decrease in loss after each epoch. During 
training, we also inspected the visual samples. Noticeably, the 
reconstructed images continued to improve as the number of 
epochs increased and the loss decreased, seen in Figure 3. 

Samples of various frames predicted by the ConvLSTM 
Autoencoder model can be seen in Figure 4.  

After training the Convolutional LSTM Autoencoder, we 
analyzed and visualized the losses on the training and 
validation sets on a graph. The graph shows a trend of 
continually decreasing losses on both the training and 
validation sets over the epochs. This indicates that the 
Autoencoder is effectively learning to reconstruct the input 
video frames and captures essential visual features in the 
learned latent space representation. The decreasing loss values 
affirm that the Autoencoder has learned to produce accurate 
reconstructions of the original video frames. 

To further evaluate the quality of the Autoencoder’s 
reconstructions, a random sample inspection is performed on 
the validation set. The actual video frames and their 
corresponding reconstructed versions are visually compared. 
The results illustrate that the Autoencoder successfully 
preserves critical details and spatial structures in the frames, 
indicating its proficiency in reconstructing visual information. 

A series of additional experiments revealed that the 
number of frames to skip has a significant impact on the 
performance of the autoencoder. When the number of frames 

to skip was reduced from 200 to 100, the validation loss of the 
autoencoder decreased by approximately 300%, as seen in 
Figure 5. 

 

 

Fig. 3. Training After Epochs. 

 

Fig. 4. Video reconstruction samples from ConvLTSM Autoencoder 

 

Fig. 5. Losses in comparison for Autoencoder visual depth 
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 Figure 6 demonstrates that the autoencoder was able to 
reconstruct the original image much better with the lower 
frame skip. 

 

Fig. 6. Autoencoder reconstruction comparison. 

However, this experiment was computationally expensive, 
requiring 80 epochs, each of which took an average of 40 
minutes to complete. This resulted in a total runtime of over 2 
days. Therefore the rest of experiments are run using 200 
frame skips. 

4.2  Multimodal Ensemble Regression Results 

With our test set constructed of 100 randomly sampled 
videos the Multimodal Ensemble Model was able to 
outperform all models except for the Swin Transformer 
(w/Scaled Target). From the MAE we are able to gain further 
insights from the model’s predictive ability and we observed 
the Multimodal Ensemble Model was able to better handle 
non-outlier predictions compared to the Swin Transformer 
(w/Scaled Target). The results showcased the architecture 
which features a combination of an Auto-encoder and 
Transformer was able to begin to learn a function that is not 
solely over-biased in over estimating the view count due to the 
nature of the dataset that includes a small percentage of video 
gaining immense amount of views. The table below shows the 
breakdown between the different models and performance 
metrics. 

TABLE I.  MODEL TEST PERFORMANCE 

Model MSE MAE 

SwinTransformer 83.96M 4.73k 

SwinTransformer(ScaledTarget) 70.2M 5.39k 

CNN3D 82.97M 4.87k 

MultimodalEnsembleModel 72.96M 4.89k 

Given the nature of the dataset, which is a sample set of 
videos, there’s a probability that any dataset used will exhibit 
some heteroscedasticity. This is because TikTok, as a 
platform, has a diverse range of videos with varying levels of 
popularity. Videos can range from being part of viral trends to 
more specialized content. To handle heteroscedasticity, MAE 
might be a better metric. From this, we can observe that the 
Swin Transformer performs well with nonscaled values, while 
it suffers when using scaled values. The Multimodal 
Ensemble Model was trained using normalized scaled values 
and tends to achieve balanced results in both MSE and MAE. 

4.3  Multimodal Classifier Variation Results 

These classes serve as proxies for the expected success of 
videos. For instance, videos in class 4 are expected to generate 
more views than 75% of all videos. In simpler terms, we 
experimented with predicting the quartile of viewership in 
which a video might land. This mapping could also be useful 

for content creators trying to predict whether their video is 
likely to go viral or fall into the least-viewed quartile. The 
quartile thresholds were derived from the training set of videos 
and applied to both the validation and test sets. To further 
illustrate the complexity of this problem, even when the 
problem is modeled as classification, all the different 
algorithms recorded an accuracy of under 30%. The 
algorithms tend to overfit the noise rather than making 
meaningful predictions. The simplest model, CNN 3D, 
performed the best, followed by the Swin Transformer with an 
accuracy of 27%. Due to time limitations, we didn’t explore 
and train the ensemble model classification as extensively, 
which resulted in a score of 23%. However, it’s worth noting 
that the parameters used in this experiment differed from those 
in the regression experiment. Overall, the classification 
approach may suffer from the imbalance of the classes. As a 
solution, we could introduce further balancing techniques, or 
even better, ensure more balanced data collection, which 
might yield better results in future experiments. 

V. CONCLUSION 

In conclusion, the results have paved the way for a 
successful series of experiments in deep learning regression 
for predicting video success metric. The Multimodal 
Ensemble Architecture proposed in this paper demonstrates its 
ability to outperform both a Vanilla CNN 3D and a Swin 
Transformer Model in MSE evaluation results. Notably, the 
Swin Transformer was trained on a diverse visual dataset, 
while the Multimodal Ensemble Model was trained solely on 
a limited video set. Despite these constraints such as limited 
computational resources, frame skipping, and video scales, 
our model still demonstrates competitive results comparable 
to state-of-the-art models, which is noteworthy. However, due 
to the vastness of the problem space, the high-accuracy 
prediction capabilities of all explored models were not fully 
demonstrated. Nonetheless, our research provides a proof of 
concept for the multimodal approach, laying the groundwork 
and establishing a milestone towards the development of 
general multimodal models. 

In future work, more extensive and diverse datasets could 
be explored to enhance the models’ ability to generalize across 
various scenarios. Additionally, fine-tuning the hyper-
parameters and experimenting with different diverse datasets 
could lead to substantial improvements in predictive 
demonstration. Despite the current limitations, the 
experiments lay a solid foundation for future advancements in 
multimodal deep regression tasks. As the field of deep 
learning continues to evolve, these preliminary results provide 
valuable insights and directions for further research and 
development. 

It is important to note that the focus of this work was to 
introduce and experiment with the multimodal deep 
regression framework. With further refinements and 
enhancements, such a framework holds great potential for 
diverse applications, including audio-visual recognition, 
video detection analysis, and multi-source data integration. 
Our experiments showcased the feasibility of the multimodal 
deep regression approach in handling complex tasks involving 
visual and audio data. The work sets the stage for future 
investigations and improvements in this exciting and 
challenging area of research. By continuing to explore 
advanced techniques and methodologies, the potential for 
more accurate and robust predictions in multimodal data 
analysis can be realized. 



41 

REFERENCES 

[1] Ashish Vaswani and Noam Shazeer, Niki Parmar, Jakob Uszkoreit, 
Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 
Attention is all you need. In NeurIPS, pages 5998––6008, 2017. 

[2] Said Yacine Boulahia, Abdenour Amamra, Mohamed Ridha Madi, and 
Said Daikh. Early, intermediate and late fusion strategies for robust 
deep learning-based multimodal action recognition. Machine Vision 
and Applications, 32(121), 2021. 

[3] Qiliang Chen, Hasiqidalatu Tang, and Jiaxin Cai. Human action 
recognition based on vision transformer and l2 regularization. In 
Proceedings of the 2022 11th International Conference on Computing 
and Pattern Recognition (ICCPR ’22), pages 224–228, 2022. 

[4] Konrad Gadzicki, Razieh Khamsehashari, and Christoph Zetzsche. 
Early vs late fusion in multimodal convolutional neural networks. In 
Proceedings of the 2020 IEEE 23rd International Conference on 
Information Fusion (FUSION), Rustenburg, South Africa, pages 1–6, 
2020. 

[5] Daya Guo, Jiangshui Hong, Binli Luo, Qirui Yan, and Zhangming Niu. 
Multi-modal representation learning for short video understanding and 
recommendation. In 2019 IEEE International Conference on 
Multimedia and Expo Workshops (ICMEW), pages 687–690, 2019. 

[6] Qin Jin, Jia Chen, Shizhe Chen, Yifan Xiong, and Alexander 
Hauptmann. Describing videos using multi-modal fusion. Proceedings 
of the 24th ACM international conference on Multimedia, pages 
1087—-1091, 2016. 

[7] Lynnette Hui Xian Ng, John Yeh Han Tan, Darryl Jing Heng Tan, and 
Roy Ka-Wei Lee. Will you dance to the challenge? predicting user 
participation of tiktok challenges. In Proceedings of the 2021 

IEEE/ACM international conference on advances in social networks 
analysis and mining (ASONAM’21), pages 356–360, 2021. 

[8] Andreas Holm Nielsen. Video prediction using convlstm autoencoder 
(pytorch). 2020. 

[9] Crystal J. Qian, Jonathan D. Tang, Matthew A. Penza, and Christopher 
M. Ferri. Instagram popularity prediction via neural networks and 
regression analysis. In IEEE Transactions on Multimedia, pages 2561–
2570, 2017. 

[10] Alec Radford, Jong Wook Kim, Tao Xu, Greg Brockman, Christine 
McLeavey, and Ilya Sutskever. Robust speech recognition via large-
scale weak supervision. arXiv preprint arXiv:2209.01109, 2022. 

[11] Xingjian Shi, Zhourong Chen, Hao Wang, and Dit-Yan Yeung. 
Convolutional lstm network: A machine learning approach for 
precipitation nowcasting. Advances in Neural Information Processing 
Systems, pages 802–810, 2015. 

[12] Cees G. M. Snoek, Marcel Worring, and Arnold W. M. Smeulders. 
Early versus late fusion in semantic video analysis. In Proceedings of 
the Annual ACM International Conference on Multimedia, Singapore, 
pages 399–402, 2005. 

[13] Georgios Tziafas and Hamidreza Kasaei. Early or late fusion matters: 
Efficient rgb-d fusion in vision transformers for 3d object recognition. 
arXiv preprint arXiv:2210.00843, 2023. 

[14] Massimiliano Viola, Luca Brunelli, and Gian Antonio Susto. Instagram 
images and videos popularity prediction: a deep learning-based 
approach. Universita degli Studi di Padova,` Padova, IT, 2021. 

[15] Jiaheng Xie, Yidong Chai, and Xiao Liu. Unbox the blackbox: Predict 
and interpret youtube viewership using deep learning. Journal of 
Management Information Systems, pages 541–579, 2023. 

 

 

TABLE II 

ConvLSTMAutoencoder Ensemble Transformer Regression Swin Transformer 

Learning Rate: 1e-4 Learning Rate: 1e-9 Epochs: 20 

Epochs: 200 Epochs: 7 Dropout: 0.1 

Hidden Size: 64 Hidden Size: 32 Embed Dim: 96 

Frame Skip: 200 Number of Attention Heads: 4 Patch Size: (4, 4, 4) 

Batch Size: 4 Dropout: 0.1 Window Size: (2, 7, 7) 

Shrink: 8 Number of Layers: 4 Depths: [2, 2, 6, 2] 

Padding: False Late Fusion: True Number of Attention Heads: [3, 6, 12, 24] 

Normalize: False Audio Transformer: True Patch Normalization: True 

Adam Optimizer Weight Decay: 0 Adam Optimizer Weight Decay: 1e-3 Adam Optimizer Weight Decay: 1e-4 

Adam Optimizer Learning Rate: 1e-4 Adam Optimizer Learning Rate: 1e-9 Adam Optimizer Learning Rate: 1e-4 

 


