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Abstract— Diabetic retinopathy causes damage to the eye's 

retina and leads to visual impairment in diabetic patients 

worldwide. It affects the retina, begins asymptomatically and 

can lead to vision loss. It can be diagnosed quite accurately by 

using machine learning algorithms to analyze retina images. 

Diagnosis at an early stage is crucial to prevent dangerous 

consequences such as blindness. This paper presents a 

comparative analysis of ensemble machine learning algorithms 

and describes an approach to the selection of hyperparameters 

to solve the problem of diabetic retinopathy stage classification 

(from 0 to 4). Special attention is focused on grid search and 

random search approaches. This study proposed a 

hyperparameter selection technique for ensemble algorithms 

based on the combination of grid search and random search 

approaches. Hyperparameter selection increased retina image 

classification accuracy. Experimental results shown that 

hyperparameter selection increased retina image classification 

accuracy for testing dataset from 0.7460 for best model (GB) 

with default parameters to 0.7503 for best model (RF). If we 

consider binary classification (diabetic retinopathy presents or 

not) it is possible to achieve accuracy of about 0.9304 (RF). 

Keywords—retina images, diabetic retinopathy recognition, 

machine learning, ensemble methods, hyperparameter, grid 
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I. INTRODUCTION 

Fundus photography makes it quite easy to capture the 
retina image. Automation of digital image analysis and 
interpretation is still very poorly developed. In the field of 
diabetic retinopathy, one of the most important applications of 
research is the early prediction and disease diagnosis. Machine 
learning methods can extract patterns from images and have 
generalization abilities that allow to build effective models for 
image classification [1-4]. The objective of ensemble methods 
is to combine the predictions of a few base estimators built 
with a given learning algorithm in arrangement to improve 
generalizability over a single estimator [5-7]. 

Hyperparameters in machine learning are a model's 
parameters whose values are predetermined before the 
training process. They can be parameters of the algorithm 
itself (for example, tree depth in random forest, number of 
neighbors in k Nearest Neighbor, weights of neurons in neural 
networks), as well as methods of feature processing, etc. There 
are several methods for solving this problem. The traditional 
way to optimize hyperparameters is grid search, which is the 
search for a manually defined subset of the hyperparameter 
learning algorithm's hyperparameter space. Despite its 
simplicity, this method has serious disadvantages. It is very 

slow because it is necessary to search for all combinations of 
all parameters. The search will continue even with obviously 
unsuccessful combinations. Often it is necessary to increase 
the search step for time-saving purposes, which may result in 
the fact that the optimal parameter value will not be found. 
Random search replaces the exhaustive enumeration of all 
combinations by their random selection. In most cases, it is 
faster than grid search, and the parameter values are not 
limited by the grid. However, it does not always allow us to 
find the optimum and does not protect from over-selection of 
obviously unsuccessful combinations [7-9]. 

This study proposed a hyperparameter selection technique 
for ensemble algorithms based on the combination of grid 
search and random search approaches. 

II. RESEARCH BACKGROUND 

The methodology of this study includes the following 
stages: data preprocessing, informative feature extraction, 
machine learning model development and hyperparameter 
model selection. 

A. Dataset 

This study used retina images from the Asia Pacific Tele-
Ophthalmology Society 2019 Blindness Detection (APTOS 
2019 BD) dataset [10]. This is a large dataset of retina images 
captured with a fundus lens under different visual conditions. 
3662 images are labeled by experts according to the degree of 
severity of diabetic retinopathy on a scale of 0 to 4. The set is 
unbalanced, and the distribution of images by grade is as 
follows: 0 - 1805 images, 1 - 370 images, 2 - 999 images, 3 - 
193 images, 4 - 295 images). Image examples are shown in 
Fig. 1. 

  

Fig. 1. Image examples 

The dataset was divided into training and test sets (80% 
and 20%, respectively) with class balance preserved. 
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B. Image Preprocessing and Features Extraction 

Preprocessing of retina images includes the following 
operations. At the image preprocessing stage it is necessary to 
perform background cropping, which sometimes occupies a 
significant percentage of the total image area and is practically 
a black and uninformative area. The experiment database 
contains images of different sizes and aspect ratios. Therefore, 
it is proposed to perform image resizing and make them 
512*512 pixels. The following 5 groups of features were 
selected as features for decision making (classification): 
Haralick features, Local Binary Patterns (LBP), histogram 
features, Threshold Adjacency Statistics (TAS), Hu moments. 
Standardization was done for all features by removing the 
mean and unit variance scaling [11]. 

In this research we did not consider the stages of 
informative feature selection, as this could be a separate 
research branch. But we believe that this step together with the 
selection of informative features can also improve the 
classification results. 

C. Machine Learning Models 

One objective of this paper is to perform a comparative 
study to evaluate the most effective algorithm for grading 
diabetic retinopathy stages. Table I presents five investigated 
ensemble machine learning algorithms [5-7]. 

TABLE I.  MACHINE LEARNING ALGORITHMS SELECTED FOR 

RESEARCH 

# Algorithm Base estimator (if it’s 

possible to define different) 

1 Bagging Classifier (BG) Decision tree classifier 

2 Random Forest Classifier (RF)  

3 Extra Trees Classifier (ET)  

4 AdaBoost Classifier (AB) Decision tree classifier 

5 Gradient Boosting Classifier (GB)  

 

Cross-validation or k-fold cross-validation (k-fold cross-
validation) with a value of k=10 is used during model 
development. Python programming language, machine 
learning library scikit-learn, computer vision and image 
processing libraries OpenCV and Mahotas were used in the 
research process [13-15]. Standard metrics for classification 
were used to evaluate model development: overall model 
prediction accuracy across all classes (accuracy), model 
accuracy in identifying positives (precision), completeness 
(recall), and F-measure (f1-score). 

III. EXPERIMENTS 

A. Technique for Hyperparameters Optimization 

Two hyperparameters, significantly affecting the 
efficiency of ensemble algorithms, were chosen for the 
experiments. 

'n_estimators' - the number of trees in the forest. 

'max_depth' - the maximum depth of the tree. 

'n_estimators' parameter is optimized for all five models. 
'max_depth' is optimized for RF and ET models. 

At the first stage, models were built on the basis of the 
training dataset with default parameter values defined in 
scikit-learn library. The accuracy of the models was evaluated 

on a test dataset. The results are shown in Table II. The 
confusion matrix and the classification report for GB model 
with the best score (‘accuracy’) for the testing set are shown 
in Fig. 2 and Fig. 3. 

Preliminary experiments have proved the limitations of 
grid search and random search approaches given in the 
Introduction. Grid search took significant amount of time. The 
step size increasing partially solved this problem, but there 
was a risk of missing the optimal value. Random search is 
faster, but also does not guarantee the results quality. 

TABLE II.  THE 10-FOLD CROSS-VALIDATION FOR ALL MODELS 

BEFORE OPTIMIZATION 

Model Mean (std) score (‘accuracy’) 

for training set 

Score (‘accuracy’) for 

testing set 

BG 0.706 (0.030) 0.720 

RF 0.743 (0.027) 0.742 

ET 0.744 (0.028) 0.727 

AB 0.679 (0.018) 0.686 

GB 0.744 (0.022) 0.746 

 

 

Fig. 2. Confusion matrix for GB with default hyperparameters 

 

Fig. 3. Classification report for GB with default hyperparameters 

The following hyperparameter search technique was 
implemented. 

For each hyperparameter: 

Step 1. Random search of hyperparameters in the specified 
range. 

Step 2. Based on step 1 results (best score/accuracy across 
all searched params), perform range reduction and grid search 
with a given step size. 

Step 3. Based on step 2 results (best score/accuracy across 
all searched params), perform range reduction, step reduction 
and the second grid search iteration. 

Step 4. In the case where the best hyperparameter value is 
chosen at the boundary of the search space, shift the search 
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interval towards the given value and perform the third grid 
search iteration. 

For each combination of hyperparameters (only for RF and ET 
models): 

 Step 5. Search for specified hyperparameter values for the 
estimator. 

B. Step 1. Random Search 

Hyperparameters with search space, default 
hyperparameter value, best parameter value from the search 
space and for random search of hyperparameters are presented 
in Table 3. The 10-fold cross-validation for all models after 
Random Search Optimization for testing dataset is presented 
in Table III. 

TABLE III.  THE MACHINE LEARNING MODELS HYPERPARAMETERS 

SPACE AND CV-SCORE FOR RANDOM SEARCH 

M
o
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el

 

Hyperparameter with 

search space 

D
ef
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er
 

B
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t 
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er
 

The best score 

(‘accuracy’) 

across all 

searched 

params for 

training set 

BG 'n_estimators': [50, 200] 100 138 0.7480 

RF 'n_estimators': [50, 200] 

'max_depth' : [5, 70] 

100 

None 

112 

57 

0.7562 

ET 'n_estimators': [50, 200] 

'max_depth' : [5, 70] 

100 

None 

165 

41 

0.7528 

AB 'n_estimators': [10, 200] 100 33 0.6934 

GB 'n_estimators': [10, 200] 100 92 0.7490 

TABLE IV.  THE CV-SCORE FOR ALL MODELS AFTER RANDOM 

SEARCH OPTIMIZATION FOR TESTING DATASET 

Model BG RF ET AB GB 

Test score 

(‘accuracy’) 

0.7285 0.7435 0.7340 0.6985 0.7258 

 

C. Steps 2-5. Grid Search 

Hyperparameter with search space, best parameter, best 
score (‘accuracy’) across all searched params for training and 
test score (‘accuracy’) are presented in Table V. 

TABLE V.  THE MACHINE LEARNING MODELS HYPERPARAMETERS 

SPACE AND BEST CV-SCORE FOR GRID SEARCH 
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BG 'n_estimators': [118, 128, 138, 148, 158] 138 0.7480 0.7480 

'n_estimators': [134, 136, 138, 140, 142] 140 0.7442 0.7367 

RF 'n_estimators': [92, 102, 112, 122, 132] 112 0.7545 0.7562 

'n_estimators': [108, 110, 112, 114, 116] 116 0.7507 0.7353 

'n_estimators': [112, 114, 116, 118, 120] 114 0.7545 0.7503 

'max_depth': [47, 52, 57, 62, 67] 57 0.7521 0.7562 

'max_depth': [53, 55, 57, 59, 61] 57 0.7528 0.7562 

'n_estimators': [112, 114, 116, 118, 120] 

'max_depth': [53, 55, 57, 59, 61] 

112 

53 

0.7521 0.7340 

ET 'n_estimators': [145, 155, 165, 175, 185] 185 0.7538 0.7299 

'n_estimators': [181, 183, 185, 187, 189] 189 0.7490 0.7285 

'max_depth': [31, 36, 41, 46, 51] 51 0.7483 0.7285 

'max_depth': [47, 49, 51, 53, 55] 51 0.7463 0.7285 

'n_estimators': [145, 155, 165, 175, 185] 155 0.7517 0.7271 

'max_depth': [31, 36, 41, 46, 51] 46 

AB 'n_estimators': [13, 23, 33, 43, 53] 33 0.6934 0.6985 

'n_estimators': [29, 31, 33, 35, 37] 31 0.6937 0.6903 

GB 'n_estimators': [72, 82, 92, 102, 112] 112 0.7483 0.7435 

'n_estimators': [108, 110, 112, 114, 116] 116 0.7473 0.7435 

 
Grid search process of ‘n_estimators’ hyperparameter for 

BG model is visualized in Fig. 4. Grid search process of 
‘n_estimators’ hyperparameter for RF model is visualized in 
Fig. 5. Grid search process of ‘max_depth’ hyperparameter for 
RF model is visualized in Fig. 6. Grid search process of 
‘n_estimators’ and ‘max_depth’ hyperparameters for RF 
model is visualized in Fig. 7. Grid search process of 
‘n_estimators’ hyperparameter for ET model is visualized in 
Fig. 8. Grid search process of ‘max_depth’ hyperparameter for 
ET model is visualized in Fig. 9. Grid search process of 
‘n_estimators’ and ‘max_depth’ hyperparameters for ET 
model is visualized in Fig. 10. Grid search process of 
‘n_estimators’ hyperparameter for AB model is visualized in 
Fig. 11. Grid search process of ‘n_estimators’ hyperparameter 
for GB model is visualized in Fig. 12. 

    
Fig. 4. Grid search process of ‘n_estimators’ hyperparameter for BG  

 

Fig. 5. Grid search process of ‘n_estimators’ hyperparameter for RF  

    

Fig. 6. Grid search process of ‘max_depth’ hyperparameter for RF  
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Fig. 7. Grid search process of ‘n_estimators’ and ‘max_depth’ 

hyperparameters for RF 

    

Fig. 8. Grid search process of ‘n_estimators’ hyperparameter for ET 

    

Fig. 9. Grid search process of ‘max_depth’ hyperparameter for ET 

 

Fig. 10. Grid search process of ‘n_estimators’ and ‘max_depth’ 

hyperparameters for RF 

    

Fig. 11. Grid search process of ‘n_estimators’ hyperparameter for AB  

    

Fig. 12. Grid search process of ‘n_estimators’ hyperparameter for GB 

D. Results Discussion 

After applying random search, we see the decrease in score 
(‘accuracy’) for the testing dataset (0.7460 for GB to 0.7435 
for RF). This is the negative side of this approach that we 
discussed before. The next stage with grid search allowed us 
to improve the result of random search and the results of initial 
models with default hyperparameters. For the testing dataset 
we received an improvement from 0.7435  to 0.7503 for RF. 
Two stages of technology showed better results. Fig. 13 and 
Fig 14. RF are shown the best score (‘accuracy’) for the testing 
dataset with 'n_estimators' : 114 and default 'max_depth' : 
None. 

 

 

Fig. 13. Confusion matrix for RF with default hyperparameters 

 

 

Fig. 14. Classification report for RF with default hyperparameters 

We received good score for 0 grading stage of diabetic 
retinopathy. Some errors are presented when we classify 1-4 
stages of diabetic retinopathy. It is important to note that 
experimental dataset is very difficult and includes images with 
diffident size, quality. Images collected in wide range of 
environment with different conditions ang using different 
equipment. It means that the input data and its quality 
influence greatly to the final results of diabetic retinopathy 
classification based on images. The most important thing is to 
detect the present of retinopathy automatically. It is two class 
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problem for image classification (binary classification). It 
could be the first, preliminary stage or additional instrument 
for treatment. After screening and diabetic retinopathy 
detection the next stage could be ‘manual’ specify process 
which includes doctor's consultation. In this case experimental 
results are promising, Fig. 15 and Table VI.  

 

Fig. 15. Confusion matrix for binary classification 

TABLE VI.  CLASSIFICATION METRICS FOR BINARY CLASSIFICATION 

Metric Score 

Accuracy 0.9304 

Precision 0.9648 

Recall 0.9037 

F1-Score 0.9332 

 

Results of binary classification show high accuracy. 
Presents of false positive error doesn’t influence greatly into 
results. It causes only double check for doctors or addition 
signal for checking. False negative is more important. It is risk 
to skip diabetic retinopathy using image analysis 
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CONCLUSION 

This paper presents a comparative analysis of ensemble 
machine learning algorithms and describes an approach for 
hyperparameter selection to solve the problem of diabetic 
retinopathy stage classification. This study proposed a 
hyperparameter selection technique for ensemble algorithms 
based on the combination of grid search and random search 
approaches. Experimental results showed that hyperparameter 
selection increased retina image classification accuracy for the 
testing dataset from 0.7460 for the best model (GB) with 

default parameters to 0.7503 for best model (RF). If we 
consider binary classification (diabetic retinopathy presents or 
not) it is possible to achieve accuracy of about 0.9304. 
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