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Abstract — Spiking neural networks (SNN) are used in 

robotics, particularly on the boards of autonomous vehicles, so 

the issues related to the hardware implementation of spiking 

neurons and SNNs is hotly discussed. Significant attention is 

devoted to the energy efficiency of the models in use. In the 

frame of the presented project, well-established neuron models 

have been investigated. As the result the spikes counting model 

(SCM) enabling real-time operation and attaining high energy 

efficiency have been developed. The implementation of the 

developed model in microcontrollers MSP430 family is achieved 

without the need of floating-point operations (FPO). Moreover, 

we analyze the issue of transferring and implementing the spikes 

counting model using alternative platforms. 
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I. INTRODUCTION  

The first successful attempt of modeling and 

understanding of human brain processes was reported in 

1943.  It resulted in creation of simple but quite effective 

model called “formal neuron” [1]. Later in 1949 Donald 

Hebb discovered details of self-tuning of biological neural 

networks [2]. A decade later, in 1957–1958, the modeling of 

a basic neuronal activity was implemented in the device 

called perceptron by F. Rosenblatt [3].   

In the second generation of artificial neural networks 

(ANNs), also known as deep learning networks (DNN) more 

complicated models of neurons were used. DNNs are 

extremely useful instrument in a variety of human activity – 

from entertainment and service to industry and medicine. 

Typical applications of ANN are weakly-formalized tasks, 

such as pattern recognition, images and sound analysis, etc. 

[4].  

Models of spiking neurons inherited yet more details of 

biological prototype compared to the previous models. Spike 

Neural Networks (SNN) are usually regarded as the third-

generation neural networks. Among the actual applications 

of SNN are signals preprocessing, and data encoding, speech 

and images recognition.  
Since last years the topic of hardware implementation of 

ANN, both classical DNN and SNN, is hotly discussed along 
with machine learning (ML) applications for embedded 
systems [5–12]. Significant attention is devoted to the energy 
efficiency of the used neuron models. Actually, the 
motivation of this study is driven not only by extremely fast-
growing quantity of sources concerning the modeling and 
hardware implementation of ANN, SNN and ML in general. 
We intended to design a simple SNN models and integrate it 
into real embedded systems. 

The presented paper is arranged as follows.  Firstly, the 
related works are analyzed. In the contest of the discussed 
problem we focused our attention on the data representation 
in SNNs and hardware implementation of the low cost and 
energy efficient models of spiking neurons. The structure and 

hardware implementation of the original spikes counting 
model (SCM) is introduced in the third section. In the forth 
section the hardware implementation of the developed SCM 
into the real embedded system based on MSP430 
microcontrollers is presented. Finally, possible applications 
of the model are considered and the author’s contribution in 
the topic is summarized. 

II. RELATED WORKS 

The last decades demonstrated a fast growth of ANN theory 

and even faster improvement of ANN practice mostly due to 

new architectures as well as the ideas of deep learning [4]. 

Unfortunately, current models of DNN such as Convolution 

Neural Networks (CNN) require huge resources in terms of 

data sets, high computational costs and energy consumption. 

Graphics Processing Units (GPUs) allow faster 

computations but the problem of high energy consumption 

still remains.  

On the one hand, many techniques have been developed 

for architectures reducing and parameters optimizing such 

as pruning in order to reduce the ANN complexity and a lot 

of works is devoted the reduction of power consumption in 

traditional DNN. On the other hand, development of 

hardware implementations of SNN is one of the promising 

ways for the problem solving due to the better modeling of 

biological neural networks in terms of energy efficiency and 

abilities for online learning. The fundamental issue in this 

way is the data representation: accumulated weighted sum 

of incoming signals is scalar in the ANNs of first and 

second generations while it is spiking in SNN and biological 

neural networks (BNNs) at the neuron’s membrane [8], 

(table I). 

TABLE I.  PROPERTIES OF BIOLOGICAL NEURAL NETWORKS, ANNS, 
AND SNNS (ACCORDING TO [8] ) 

Properties BNNse ANNs SNNs 

Data Representation Spikes Scalars Spikes 

Training Dynamics of 

Synapses 

Gradient 

Learning 

Under 

discussion 

Platform Brain VLSI SpecialVLSI 

Many attempts have been made for modeling and 

hardware implementation of spiking neurons and SNNs [6–

11]. Computational complexity of the model is usually 

evaluated in numbers of variables and floating points 

operations (FPO) required for the modeling. Usually one 

needs from 5 to 1200 FPO in order to simulate one spiking 

neuron. Parameters of selected models are listed in table II. 

Among the simplest models of spiking neuron, Izhhikevich’s 

model is attractive for hardware implantation and 

applications in signal processing systems [9–12]. For 

example, it was applied for encoding the temporal radar 
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signal into spikes for the radar interference detection [9]. 

Parameters of the selected spiking neurons models 

(according to [6] and [13]) are presented in the table II. 

TABLE II.  PARAMETERS OF SPIKING NEURONS SELECTED MODELS 

(ACCORDING TO [6,13] ) 

Model Number of 

FPO 

Number of 

Variables 

Complexity 

Integrate-and-Fire 5 1 Very Low 

Resonate-and-Fire 10 2 Very Low 

Izhhikevich (2003) 13 2 Very Low 

Spike Response 50 1 Very Low 

Hodkin-Huxley 1200 1 Very High 

Tuning of SNN differs from learning of first and second 

generations ANN in some details. It was shown that input 

patterns can be encoded in the synaptic weights by local 

Hebbian delay-learning of spiking neurons where, after 

learning, the firing time of an output neuron reflects the 

distance of the evaluated pattern [12]. In fact, the such 

algorithms as Hebbian Learning, Genetic Algorithms may 

be used in usual manner for SNN learning [12,13]. 

Recently the original spike-based learning rule for deep 

SNN training was introduced. Differing from other spike-

based learning rules, the spike count of each neuron is used 

as the surrogate for gradient backpropagation requiring 

much less memory and computations [15]. 

Spiking neurons could be implemented in hardware on 

the basis of special neuromorphic VLSI [8] or 

microcontroller unit (uCU). For example, a spiking neuron 

models for neuroscience teaching were implemented in 

ATMega328 uCU on the basis of Arduino platform [11]. 

III.  THE SPIKES COUNTING MODEL  

Neurons in BNN perform a wide range of functions – 
from simple data encoding to convolution and feature 
extraction [6, 8]. Here we intended to develop a simple 
resonant model for data encoding. A lot of such neuron 
models are based on the differential equation presented in 
the next complex form: 

x’= (– d + iw0) x+I, 

where (x, x’) – neuron state space vector (x’ is the 
derivative), d– decay constant, ω0 = 2 π fo – neuron’s resonant 
frequency, I – input signal.  

Searching the numerical algorithm to integrate the above 
equation, we try to minimize the number of FPO. In fact the 
most of microcontrollers has counters and timers on the chip 
and it allows us to perform summing of spikes without using 
the central processing unit (CPU). 

The developed spikes counting model (SCM) was 
simulated in SciLab and Matlab/Similink environments. The 
structure of developed model is presented in Fig. 1. 
Parameters of State-Space and Timer blocks are tuned 
depending on the input signal under processing. Functions 
of the other blocks are clear from subscriptions. There are 
two outputs: encoded signal from the counter (Sum of 
Elements) and single spike for the next synaptic connection. 

The designed SCM has some features of resonate-and-
fire neuron [9] and Izhhikevich’s model [10], nevertheless 

the implementation of it on the board of microcontroller is 
achieved without the need of floating-point operations 
(FPO). It is achieved using spikes counting at the successive 
time intervals determined by the Timer as it is shown at the 
Fig. 1. 

 

Fig. 1. The structure of  SCM   

The presented model was simulated and tested both on 
the basis of CMOS CD400 serial logical elements and ultra-
low power microcontrollers MSP430 (presented in the next 
section).  

IV. HARDWARE IMPLEMENTATION OF THE SPIKING NEURON  

The developed model was firstly implemented on the 
basis of CMOS CD400 serial logical elements (Fig.2). In this 
case, the analyzed signal is connected to the analogue signal 
preprocessing unit consisting of a selective amplifier and 
logical AND gate with Schmitt’s trigger function 
(CD4083A). The Timer (NE555P) determines the duration of 
the time window allowing pulses from the signal 
preprocessing unit pass to the integrated counter (CD4520). 
The LED display is used for signals selection and control. 

 

Fig. 2. The hardware implementation  of  spikes counting neuron model 

The microcontroller based experimental setup for the 
model testing is presented in Fig. 3. Functions of timing and 
spikes counting are performed in uCU (MSP430G2553). 
The signal preprocessing unit is the same as above. 

 

 

Fig. 3. MSP430G2553 based experimental seup 

The developed model of SCM could be easily 
implemented in the MSP430 family microcontrollers based 
on the performed modeling.  

Code Composer Studio was used as the IDE for 
MSP430G2553 embedded code programming and 
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debugging. The flowchart of an algorithm for spikes 
counting is presented below in Fig. 4. Different low power 
modes (LPMs) were used for the better energy saving. 

 

 

Fig. 4. Flowchart for CSM simulation in MSP430  

On switching the power, RESET signal is formed, ports 
and timers are initiated, constants T (time window duration) 
and Nref (expected quantity of spikes within the time 
window T) depending on the input signal under processing 
are loaded, microcontroller LPM3 is switched. On arriving 
any signal from the signal preprocessing unit to pin P1.4 of 
MSP430 the spikes pulses are counted. Finally, we have the 
quantity of counted spikes within the selected time interval T 
or output signal if the quantity of counted spikes is equal to 
the preinstalled Nref. 

Besides the educational purpose of demonstrating the 
SCM model, the algorithm could be used in practice for 
voice activation (i.e. switching on) any embedded system. 
We consider the switching on an embedded system on 
arriving selected voice command as the useful application of 
developed SCM model. In another words, the main 
embedded system may be in the energy saving standby 
mode, while the SCM model in MSP430 is active any time 
performing the analysis of input audio signals. A signal for 
the main system activation is generated if the quantity of 
counted pulses is in the range corresponding the selected 
voice command. The calculated parameters of the neuron 
were loaded into the uCU memory on performing signals 
analysis for the chosen limited set of voice commands.  

Sounds NUL, RAZ, DWA, TRI (in Russian) were 
recorded with the help of digital scope and used for this 

procedure testing. Parameters of SCM were tuned for sound 
NUL (Fig. 5 up), selected for system switching in the next 
way: Nref = 9 for the time window T=0.1 s. It was shown 
that the model recognized the NUL and there was no reaction 
on the sound TRI (Fig. 5 bottom) and the other sounds.   

 

 

Fig. 5. Tested signals:  NUL (up)  and TRI  (bottom)     

There are different strategies for using the SCM neuron 
in a voice command analyzing:  

i) counting the pulses from the signal preprocessing unit 
within selected time window using onboard Timer_A0;  

 ii) using the onboard analog-to-digital converter (ADC), 
where interrupt from ADC will determine the value of the 
input source signal any time. 

Strategies i) and ii) are effective in terms of energy 
saving, although the first method will be preferable for 
greater efficiency as the LPM3 mode in MSP430G2553 
requires only 1.8 V power supply. In practice it will be 
easier to parallelize the task with an ADC by sending a 
signal to other pins, changing only the program and not 
affecting the modification of the hardware (especially since 
some MCUs, for example MSP430G2553, implement fast 
continuous reading). This allows us to increase accuracy 
paying a little cost.  

The loss in power consumption may be not significant as 
the MSP430 microcontrollers have their own internal 
oscillator for the ADC. It means that it does not have any of 
the clock signals, which also allows the MCU to be used in 
one of the low power modes.  

In fact, the model could be incorporated into any 
microcontroller containing counters or ADC on the board. 
Nevertheless, there are strong arguments for using 
microcontrollers from the MSP430 family: it is possible to 
achieve the better energy consumption parameter using 
Energy Trace Technology while debugging embedded 
software with the help of the Code Composer Studio IDE. 

Scalability is one of the remarkable properties of the 
MSP430 family. It allows us developing and testing the 
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prototype based on the simple and cheap microcontroller and 
later migrate with tested prototype to the more powerful 
boards in terms of the speed and quantity of timers on the 
uCU crystal (Table III).  

TABLE III.  FEATURES OF THE SELECTED MICROCONTROLLERS 

uCU  
Features 

Timers on board Max Speed  
Energy 

consumption  

MSP430G2211 1 8 Mips  0.5µA* 

MSP430G2553 2 16 Mips 0.5 μA  * 

MSP430FR2311 3 16 Mips 1.0 μA * 

ATMega328P 3  16 Mips 1.0 μA * 

STM32F030F4 11 48 Mips   2.6 µA* 

Raspberry Pi 4 2 1500Mips 0.5 A 

*|) Energy consumption – in Low Power Mode (LPM) 

V. DISCUSSION AND CONCLUSION 

In the paper the spikes counting model of neuron has 
been designed and tested. It could be implemented into 
embedded systems using a microcontroller or CMOS IC 
logical elements CD4000 (analog of K561) serial. 

The implementation of the proposed model in 
microcontrollers MSP430 family is achieved in the real time 
without the need for floating-point CPU operations.  

The issue of transferring and implementing the discussed 
model onto alternative platforms was also considered. In 
fact, any microcontroller may be used if the energy 
efficiency is no importance, but we consider the proposed 
approach for microcontroller-based simulation of spiking 
neurons as preferable. The remarkable features of the 
developed models are the low cost and the lower energy 
consumption compared to the other hardware 
implementations of spiking neurons. The energy 
consumption of the SCM model in MSP430 microcontroller 
is twice less in comparison to the hardware model based on 
ATMega328 uCU [11].  

The choice of components and embedded system's 
structure was made with the intention of being sufficient to 
demonstrate the principles of spiking neurons modeling. 
Evidently the quantity of recognized voice commands for 
every uCU is limited by the quantity of timers-counters on 
the crystal of used uCU. Nevertheless, it is possible to design 
the advanced embedded system for recognizing wider set of 
voice commands adding peripherical SCM such as presented 
in Fig. 2. 

The area of possible applications of spiking neurons in 
general and the developed model in private is much wider 
than considered above. For example, it is possible to detect 
the arrhythmia of heart beating signals, perform Fourie 
transform and the other functions [8, 15]. It also may be 

applied for sensors connecting and biomedical signals 
analysis. The presented project is being in the state of 
integrating the developed models, devices and software into 
the educational process. It was carried out by students at the 
Faculty of Radio Physics and Computer Technologies during 
the courses "Simulation and Statistical Modeling" and 
"Neural Networks and Deep Learning."   
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