
22

Fast Random Search Algorithm in Neural networks

Training

Vadim Matskevich

Department of Information

Management Systems

Belarusian State University, Faculty of

Applied Mathematics and Informatics

Minsk, Belarus

matskevich1997@gmail.com

Abstract—The paper deals with a state-of-art applied

problem related to the neural networks training. Currently,

gradient descent algorithms are widely used for training.

Despite their high convergence rate, they have a number of

disadvantages, which, with the expansion of the neural

networks' scope, can turn out to be critical.

The paper proposes a fast algorithm for neural networks

training based on random search. It has been experimentally

shown that in terms of the proposed algorithm's convergence

rate, it is almost comparable to the best of the gradient

algorithms, and in terms of quality it is significantly ahead of it.

Keywords—neural networks, random search, gradient decent,

training.

I. INTRODUCTION

Neural networks are at the heart of many modern

information systems. With the digital devices development,

the processed data amount is constantly growing. This leads

to the need to design neural networks with a large number of

tunable parameters. Setting parameters for a specific

application task is based on the training process. The

efficiency of information systems as whole depends on the

neural networks training quality. Therefore, the relevance of

training neural networks training in the face of increasing

complexity of their architecture is constantly increasing.
Gradient descent algorithms are traditionally used to train

neural networks [1]. However, having fast convergence, they
do not always guarantee the resulting solution quality. To
solve this problem, training algorithms based on random
search are used [2]. With the growth of modern computers'
computing power, the popularity of such algorithms is
constantly growing.

II. PROBLEM ANALYSIS

Training algorithms based on the idea of gradient descent
have become widespread due to their high convergence rate
[3]. However, they require objective function differentiability,
which significantly narrows the class of applied problems to
be solved. Moreover, algorithms of this type can converge to
solutions where the gradient value is close to or equal to zero
[4]. This, in turn, can lead to a decrease in the resulting
solution quality.

To combat this problem, training algorithms based on
random search began to be used. The most common among
them are genetic algorithms and annealing algorithms [5].
However, this class of algorithms is not widely used due to the
low convergence rate. Consider convergence issues in more
detail.

Gradient descent methods train neural networks quickly
due to the small number of iterations required to ensure
convergence. In practice, the convergence of such algorithms

requires about 105 iterations, while for the random search
method – about 106.

In addition, gradient descent methods have the scalability
property. When training neural networks with a large number
of tunable parameters, a large training set is required. The
gradient descent method at each iteration calculates the
gradient value and updates the parameters based on a fairly
small fragment of the training dataset. The random search
method, in turn, at each iteration calculates the objective
function value on the entire dataset. This leads to a quadratic
(compared to linear for the gradient) increase in the amount of
computation at a single iteration.

Thus, it is necessary to develop a random search algorithm
that in practice would have an acceptable convergence rate.

III. TRAINING ALGORITHM

To train neural networks, a hybrid algorithm that uses the
ideas of random search and gradient descent is proposed. In
this algorithm, to construct variants of transition to a new
solution, the current solution's vicinity is randomly generated,
and the transition is carried out only to the solution for which
the error functional value doesn’t increase.

Consider the problem of some objective function f
minimizing. We will assume that the optimized parameters
can be divided into sets, each of which has its own supposed
optimal range of values. The algorithm consists of the
following steps.

Preliminary step. Initialization (randomly) of the initial
solution x0 and f(x0) calculation.

Step 1. New solution y generation and f(y) calculation.
Step 1.1 Generating random variables procedure.
m uniformly distributed on a segment from zero to a

number equal to the number of parameters in the set random
variables a1,a2,…,am are generated. m random permutations of
length equal to the number in the parameter set are generated.
The first a1,a2,…,am of elements of each permutation define
the parameters' indexes to be changed in each set of
parameters, respectively.

Step 1.2 Generating new solution procedure.
For each changeable parameter uniformly distributed on a

segment [-l/2;l/2] random variable b is generated. The value
of l depends on which set the variable parameter belongs to,
and is equal to l1, l2, …, lm respectively. The l values for each
set are given as algorithm's parameters.

Let xi be a changeable parameter, and it's new value be xi’,
then: xi'=xi+b.

Step 2. Current solution х is replaced to y, if

() ()f x f y
.

Step 3. Stop criteria.
If for N successive perfect iterations (N is algorithm's

parameter) there were not transitions to a new solution, then
the algorithm ends, otherwise go to Step 1.

23

To solve the scalability problem, the following algorithm's
modification is proposed (see Fig. 1). In this case, scalability
means the amount of computations independence from the
amount of input data.

Fig. 1. Hybrid algorithm data mixture.

At the initialization of initial solution stage, the training
dataset is duplicated Q times, where Q is algorithm's
parameter. After that, an elements random permutation is
performed within each original dataset's copy. Dataset's
duplication and permutation of elements within the copies
increase the dataset's fragments diversity, which improves the
training quality in general. The dataset increased in this way
is divided into QM fragments, where M is algorithm's
parameter. It is assumed that the training dataset is divided
into fragments without a remainder. The parameter M is
selected in such a way that the dataset is divided into big data
fragments.

Splitting into small fragments leads to low accuracy of the
objective function estimation on the entire training set and
poor training quality. On the other hand, splitting the dataset

into too large fragments requires an excessively large number
of iterations and calculations to ensure convergence.

At the initialization stage, the objective function value is
accurately calculated on the entire training set. To do this, all
fragments of the training dataset are fed into the network being
trained one by one and the objective function values of are
calculated. The calculated values for each fragment are stored,
summed up – this is the exact objective function value
multiplied by Q.

At each iteration of this algorithm, value is optimized on
one of the fragments of the training set. At the first iteration,
the objective function value for the first fragment is
calculated. Every K iterations, a cyclic change of training
dataset's fragment is performed, where K is algorithm's
parameter.

At each iteration, the objective function value multiplied
by Q is estimated on the entire training set. To do this, its
estimate is calculated from the sum of the old values for all its
fragments. The new value of the objective function is defined
as the subtraction from old estimate the old value for the
current fragment and add the objective function value on this
fragment for the new solution.

The proposed training algorithm completely solves the
scaling problem. As in the case of gradient algorithms, the size
of the training dataset fragment at each iteration is a constant
that does not depend on the size of the network being trained.
This provides a linear increase in the training complexity with
the network size growth.

Using the random solution generation procedure, one can
control the solution space size. When generating a wide
current solution's vicinity, it is possible to generate almost any
solution in several iterations. If for generation we specify the
current solution's ε-vicinity, then the algorithm degenerates
into a simple gradient method.

Thus, the described algorithm is a kind of compromise
between the solution quality and speed.

IV. EXPERIMENTS

To compare the developed algorithm efficiency with
gradient methods, let's consider solving the problems of color
image compression and pattern recognition. For comparison
with gradient methods, the best training algorithm will be used
 ̶ following the moving leader (FTML) [6].

For experiments CIFAR-10 [7] and STL-10 [8, 9] datasets
were used. The STL-10 sample was used to compress color
images with a resolution of 96x96, and CIFAR-10 was used
to pattern recognition on color images with a resolution of
32x32.

To classify images, not very difficult separable classes
were used to simplify the training algorithms effectiveness
comparison. The most common quality functionals were used
to evaluate the compression quality: mean squared error
(MSE), peak signal to noise ratio (PSNR), with human visual
system (PSNR-HVS), structural similarity image measure
(SSIM).

For the experiments, 8-fold, 16-fold and 32-fold
compression were chosen. A higher compression ratio results
in too much loss. At the same time, a lower compression ratio
does not make sense due to the presence of efficient classical
compression algorithms.

To compress color images, a deep belief network was
designed based on restricted Boltzmann machines. For 8-fold
compression, the images were divided into blocks of 4x4
pixels. Each image block was used to train a separate Gauss-
Bernoulli type restricted Boltzmann machine. Thus, for

24

compression, a single-layer neural network was constructed
from a composition of 576 restricted Boltzmann machines of
the same architecture. The input layer of each machine had 48
neurons, while the hidden layer had 48 neurons. This provides
8-fold compression. For 16-fold compression in machines, the
number of neurons in the hidden layer was reduced to 24. For
32-fold compression, a two-layer belief network was
constructed. The first layer had the same architecture as with
16-fold compression. The second layer was a composition of
288 restricted Bernoulli-Bernoulli-type Boltzmann machines.
There are 48 neurons in the input layer of each machine, and
24 in the hidden layer.

For pattern recognition, a deep belief network was
constructed based on autoencoders with a classifier in the last
layers in the form of a multilayer perceptron. The images were
divided into blocks of 2x2 pixels. A separate autoencoder was
trained for each block The first layer of the network was a
composition of 256 autoencoders of the same architecture.
There are 12 neurons in the autoencoder input layer, and 6 in
the hidden layer. The second layer of the network consisted of
a composition of 128 autoencoders of the same architecture.
After that, a multilayer perceptron is located in the neural
network. The input layer contains 768 neurons. The hidden
layer contains 8 neurons with a bipolar sigmoid activation
function. The output layer consists of two neurons with a
softmax activation function.

Training was carried out on a computer with a video card
nvidia rtx 3070 with 5888 cores (driver version 470.161.03)
and 4-core CPU intel i7-4770k with 2x8 GB DDR3 1600MHz
RAM on operating system Lubuntu 20.04. The time was
measured by calling the gettimeofday function. The training
algorithms are implemented in a special cross-platform
framework [10] using the OpenMP and OpenCL libraries in
C++.

The obtained experiments results show the proposed
training algorithm high efficiency (see Table I, II).

TABLE I. IMAGE COMRESSION RELUTS

Training

algorithm

Compr.

ratio,
bit/pix.

MSE PSNR
PSNR_

HVS
SSIM

Train.

time, h

FTML

3 254 24.2 24.4 0.756 10.0

1.5 397 22.3 22.5 0.673 4.00

0.75 756 19.4 19.5 0.509 6.00

Proposed

3 271 23.9 24.1 0.737 10.0

1.5 385 22.4 22.5 0.671 10.0

0.75 692 19.8 19.9 0.534 13.0

TABLE II. PATTERN RECOGNITION RESULTS

Classes pairs 6-8 1-4 5-9 0-2

FTML 93.3 89.9 88.2 83.6

Proposed 93.5 89.4 89.0 83.4

From the color image compression results it can be seen

that as the problem being solved becomes more complex (see
Table 1), the developed algorithm begins to significantly
outperform gradient training algorithms. It turned out to be on

average 1.9 slower than the gradient, but in this case it is not
critical, because training time remains within reasonable
limits.

In solving the pattern recognition problem (see Table 2),
the proposed algorithm is not inferior in terms of training
speed. Moreover, on average, the proposed algorithm shows
better results compared to gradients. Achieving a large
advantage in this problem is quite difficult due to the dataset
complexity.

V. CONCLUSION

The paper proposes a hybrid training algorithm based on
combining of random search and gradient descent ideas. It has
been experimentally shown that this algorithm is superior in
the obtained solution quality to gradient algorithms, but is
slightly inferior in training speed, which is not critical.

The proposed in the paper algorithm has no significant
limitations in its application in practice. Due to the algorithm
scalable modification, it becomes possible to use large training
datasets and train large neural networks. Moreover, as the
computing power grows, the set of solutions considered by the
algorithm increases in the time allocated for neural network
training, which leads to obtained solution's quality increase.
Thus, we can conclude that the proposed in the paper hybrid
training algorithm has a certain promise in applied problems
solving.

REFERENCES

[1] D. P. Kingma, J. L. Ba, “Adam: A Method for Stochastic
Optimization,” Proc. of the 3rd Intern. Conf. on Learning
Representations (ICLR 2015), pp. 1 Journal of Machine Learning
Research 23(260). – 2022. – pp. 1-15, 2015. DOI:
10.48550/arXiv.1412.6980.

[2] DW. Zhang, L. Weilin, W. Xiaohua, L. Xiaofeng, “Application of
simulated annealing genetic algorithm-optimized back propagation
(BP) neural network in fault diagnosis,” International Journal of
Modeling Simulation and Scientific Computing 10 (4). 2019.
DOI:10.1142/S1793962319500247.

[3] A. Jentzen, A. Riekert, “A proof of convergence for the gradient
descent optimization method with random initializations in the training
of neural networks with ReLU activation for piecewise linear target
functions,” Journal of Machine Learning Research 23(260). 2022.– pp.
1–50.

[4] D. Federici, “Limitations of gradient methods in sequence learning,”
Proceedings of the 9th International Conference on Neural Information
Processing, 2002. ICONIP'02. – IEEE, 2002. – pp. 2369–2373.

[5] S. Ding, C. Su, J. Yu, “An optimizing BP neural network algorithm
based on genetic algorithm,” Artificial intelligence review. – Springer
2011. 36. – pp. 153–162. DOI 10.1007/s10462-011-9208-z.

[6] Sh. Zheng, J.T. Kwok, “Follow the moving leader in deep learning,”
Proc. of the 34-th International Conference on Machine Learning,
2017. Vol. 70. – pp. 4110–4119.

[7] CIFAR-10 dataset – link: https://www.cs.toronto.edu/~kriz/cifar.html
– Access date: 15.05.2023.

[8] STL-10 dataset – link: web.archive.org/web/20110803194852/
stanford.edu/~acoates//stl10/ – Access date: 15.05.2023.

[9] STL-10 dataset description. – link: stanford.edu/~acoates//stl10/ –
Access date: 15.05.2023.

[10] V.V. Krasnoproshin, V.V. Matskevich, “Neural network software
technology trainable on the random search principles,” Research
Papers Collection “Open Semantic Technologies for Intelligent
Systems”, Iss.7, Minsk, BSUIR. 2023, – pp. 133–140.

