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Abstract—The paper deals with a state-of-art applied 

problem related to the neural networks training. Currently, 

gradient descent algorithms are widely used for training. 

Despite their high convergence rate, they have a number of 

disadvantages, which, with the expansion of the neural 

networks' scope, can turn out to be critical. 

The paper proposes a fast algorithm for neural networks 

training based on random search. It has been experimentally 

shown that in terms of the proposed algorithm's convergence 

rate, it is almost comparable to the best of the gradient 

algorithms, and in terms of quality it is significantly ahead of it. 
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I. INTRODUCTION 

Neural networks are at the heart of many modern 

information systems. With the digital devices development, 

the processed data amount is constantly growing. This leads 

to the need to design neural networks with a large number of 

tunable parameters. Setting parameters for a specific 

application task is based on the training process. The 

efficiency of information systems as whole depends on the 

neural networks training quality. Therefore, the relevance of 

training neural networks training in the face of increasing 

complexity of their architecture is constantly increasing. 
Gradient descent algorithms are traditionally used to train 

neural networks [1]. However, having fast convergence, they 
do not always guarantee the resulting solution quality. To 
solve this problem, training algorithms based on random 
search are used [2]. With the growth of modern computers' 
computing power, the popularity of such algorithms is 
constantly growing. 

II. PROBLEM ANALYSIS 

Training algorithms based on the idea of gradient descent 
have become widespread due to their high convergence rate 
[3]. However, they require objective function differentiability, 
which significantly narrows the class of applied problems to 
be solved. Moreover, algorithms of this type can converge to 
solutions where the gradient value is close to or equal to zero 
[4]. This, in turn, can lead to a decrease in the resulting 
solution quality. 

To combat this problem, training algorithms based on 
random search began to be used. The most common among 
them are genetic algorithms and annealing algorithms [5]. 
However, this class of algorithms is not widely used due to the 
low convergence rate. Consider convergence issues in more 
detail. 

Gradient descent methods train neural networks quickly 
due to the small number of iterations required to ensure 
convergence. In practice, the convergence of such algorithms 

requires about 105 iterations, while for the random search 
method – about 106.  

In addition, gradient descent methods have the scalability 
property. When training neural networks with a large number 
of tunable parameters, a large training set is required. The 
gradient descent method at each iteration calculates the 
gradient value and updates the parameters based on a fairly 
small fragment of the training dataset. The random search 
method, in turn, at each iteration calculates the objective 
function value on the entire dataset. This leads to a quadratic 
(compared to linear for the gradient) increase in the amount of 
computation at a single iteration. 

Thus, it is necessary to develop a random search algorithm 
that in practice would have an acceptable convergence rate. 

III. TRAINING ALGORITHM 

To train neural networks, a hybrid algorithm that uses the 
ideas of random search and gradient descent is proposed. In 
this algorithm, to construct variants of transition to a new 
solution, the current solution's vicinity is randomly generated, 
and the transition is carried out only to the solution for which 
the error functional value doesn’t increase. 

Consider the problem of some objective function f 
minimizing. We will assume that the optimized parameters 
can be divided into sets, each of which has its own supposed 
optimal range of values. The algorithm consists of the 
following steps. 

Preliminary step. Initialization (randomly) of the initial 
solution x0 and f(x0) calculation. 

Step 1. New solution y generation and f(y) calculation. 
Step 1.1 Generating random variables procedure. 
m uniformly distributed on a segment from zero to a 

number equal to the number of parameters in the set random 
variables a1,a2,…,am are generated. m random permutations of 
length equal to the number in the parameter set are generated. 
The first a1,a2,…,am of elements of each permutation define 
the parameters' indexes to be changed in each set of 
parameters, respectively. 

Step 1.2 Generating new solution procedure.  
For each changeable parameter uniformly distributed on a 

segment [-l/2;l/2] random variable b is generated. The value 
of l depends on which set the variable parameter belongs to, 
and is equal to l1, l2, …, lm respectively. The l values for each 
set are given as algorithm's parameters. 

Let xi be a changeable parameter, and it's new value be xi’, 
then: xi'=xi+b. 

Step 2. Current solution х is replaced to y, if 

( ) ( )f x f y
. 

Step 3. Stop criteria.  
If for N successive perfect iterations (N is algorithm's 

parameter) there were not transitions to a new solution, then 
the algorithm ends, otherwise go to Step 1. 
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To solve the scalability problem, the following algorithm's 
modification is proposed (see Fig. 1). In this case, scalability 
means the amount of computations independence from the 
amount of input data. 

Fig. 1. Hybrid algorithm data mixture. 

At the initialization of initial solution stage, the training 
dataset is duplicated Q times, where Q is algorithm's 
parameter. After that, an elements random permutation is 
performed within each original dataset's copy. Dataset's 
duplication and permutation of elements within the copies 
increase the dataset's fragments diversity, which improves the 
training quality in general. The dataset increased in this way 
is divided into QM fragments, where M is algorithm's 
parameter. It is assumed that the training dataset is divided 
into fragments without a remainder. The parameter M is 
selected in such a way that the dataset is divided into big data 
fragments.  

Splitting into small fragments leads to low accuracy of the 
objective function estimation on the entire training set and 
poor training quality. On the other hand, splitting the dataset 

into too large fragments requires an excessively large number 
of iterations and calculations to ensure convergence. 

At the initialization stage, the objective function value is 
accurately calculated on the entire training set. To do this, all 
fragments of the training dataset are fed into the network being 
trained one by one and the objective function values of are 
calculated. The calculated values for each fragment are stored, 
summed up – this is the exact objective function value 
multiplied by Q.  

At each iteration of this algorithm, value is optimized on 
one of the fragments of the training set. At the first iteration, 
the objective function value for the first fragment is 
calculated. Every K iterations, a cyclic change of training 
dataset's fragment is performed, where K is algorithm's 
parameter.  

At each iteration, the objective function value multiplied 
by Q is estimated on the entire training set. To do this, its 
estimate is calculated from the sum of the old values for all its 
fragments. The new value of the objective function is defined 
as the subtraction from old estimate the old value for the 
current fragment and add the objective function value on this 
fragment for the new solution. 

The proposed training algorithm completely solves the 
scaling problem. As in the case of gradient algorithms, the size 
of the training dataset fragment at each iteration is a constant 
that does not depend on the size of the network being trained. 
This provides a linear increase in the training complexity with 
the network size growth. 

Using the random solution generation procedure, one can 
control the solution space size. When generating a wide 
current solution's vicinity, it is possible to generate almost any 
solution in several iterations. If for generation we specify the 
current solution's ε-vicinity, then the algorithm degenerates 
into a simple gradient method. 

Thus, the described algorithm is a kind of compromise 
between the solution quality and speed. 

IV. EXPERIMENTS 

To compare the developed algorithm efficiency with 
gradient methods, let's consider solving the problems of color 
image compression and pattern recognition. For comparison 
with gradient methods, the best training algorithm will be used 
 ̶  following the moving leader (FTML) [6].  

For experiments CIFAR-10 [7] and STL-10 [8, 9] datasets 
were used. The STL-10 sample was used to compress color 
images with a resolution of 96x96, and CIFAR-10 was used 
to pattern recognition on color images with a resolution of 
32x32.  

To classify images, not very difficult separable classes 
were used to simplify the training algorithms effectiveness 
comparison. The most common quality functionals were used 
to evaluate the compression quality: mean squared error 
(MSE), peak signal to noise ratio (PSNR), with human visual 
system (PSNR-HVS), structural similarity image measure 
(SSIM).  

For the experiments, 8-fold, 16-fold and 32-fold 
compression were chosen. A higher compression ratio results 
in too much loss. At the same time, a lower compression ratio 
does not make sense due to the presence of efficient classical 
compression algorithms. 

To compress color images, a deep belief network was 
designed based on restricted Boltzmann machines. For 8-fold 
compression, the images were divided into blocks of 4x4 
pixels. Each image block was used to train a separate Gauss-
Bernoulli type restricted Boltzmann machine. Thus, for 
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compression, a single-layer neural network was constructed 
from a composition of 576 restricted Boltzmann machines of 
the same architecture. The input layer of each machine had 48 
neurons, while the hidden layer had 48 neurons. This provides 
8-fold compression. For 16-fold compression in machines, the 
number of neurons in the hidden layer was reduced to 24. For 
32-fold compression, a two-layer belief network was 
constructed. The first layer had the same architecture as with 
16-fold compression. The second layer was a composition of 
288 restricted Bernoulli-Bernoulli-type Boltzmann machines. 
There are 48 neurons in the input layer of each machine, and 
24 in the hidden layer. 

For pattern recognition, a deep belief network was 
constructed based on autoencoders with a classifier in the last 
layers in the form of a multilayer perceptron. The images were 
divided into blocks of 2x2 pixels. A separate autoencoder was 
trained for each block The first layer of the network was a 
composition of 256 autoencoders of the same architecture. 
There are 12 neurons in the  autoencoder input layer, and 6 in 
the hidden layer. The second layer of the network consisted of 
a composition of 128 autoencoders of the same architecture. 
After that, a multilayer perceptron is located in the neural 
network. The input layer contains 768 neurons. The hidden 
layer contains 8 neurons with a bipolar sigmoid activation 
function. The output layer consists of two neurons with a 
softmax activation function.  

Training was carried out on a computer with a video card 
nvidia rtx 3070 with 5888 cores (driver version 470.161.03) 
and 4-core CPU intel i7-4770k with 2x8 GB DDR3 1600MHz 
RAM on operating system Lubuntu 20.04. The time was 
measured by calling the gettimeofday function. The training 
algorithms are implemented in a special cross-platform 
framework [10] using the OpenMP and OpenCL libraries in 
C++. 

The obtained experiments results show the proposed 
training algorithm high efficiency (see Table I, II). 

TABLE I.  IMAGE COMRESSION RELUTS 

Training 

algorithm 

Compr. 

ratio, 
bit/pix. 

MSE PSNR 
PSNR_

HVS 
SSIM 

Train. 

time, h 

FTML 

3 254 24.2 24.4 0.756 10.0 

1.5 397 22.3 22.5 0.673 4.00 

0.75 756 19.4 19.5 0.509 6.00 

Proposed 

3 271 23.9 24.1 0.737 10.0 

1.5 385 22.4 22.5 0.671 10.0 

0.75 692 19.8 19.9 0.534 13.0 

TABLE II.  PATTERN RECOGNITION RESULTS 

Classes pairs 6-8 1-4 5-9 0-2 

FTML 93.3 89.9 88.2 83.6 

Proposed 93.5 89.4 89.0 83.4 

 
From the color image compression results it can be seen 

that as the problem being solved becomes more complex (see 
Table 1), the developed algorithm begins to significantly 
outperform gradient training algorithms. It turned out to be on 

average 1.9 slower than the gradient, but in this case it is not 
critical, because training time remains within reasonable 
limits. 

In solving the pattern recognition problem (see Table 2), 
the proposed algorithm is not inferior in terms of training 
speed. Moreover, on average, the proposed algorithm shows 
better results compared to gradients. Achieving a large 
advantage in this problem is quite difficult due to the dataset 
complexity. 

V. CONCLUSION 

The paper proposes a hybrid training algorithm based on 
combining of random search and gradient descent ideas. It has 
been experimentally shown that this algorithm is superior in 
the obtained solution quality to gradient algorithms, but is 
slightly inferior in training speed, which is not critical. 

The proposed in the paper algorithm has no significant 
limitations in its application in practice. Due to the algorithm 
scalable modification, it becomes possible to use large training 
datasets and train large neural networks. Moreover, as the 
computing power grows, the set of solutions considered by the 
algorithm increases in the time allocated for neural network 
training, which leads to obtained solution's quality increase. 
Thus, we can conclude that the proposed in the paper hybrid 
training algorithm has a certain promise in applied problems 
solving. 
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