
143

Efficient Scene Image Synthesis Based on Pipeline

Technology

Dzmitry Mazouka

Department of Information Management Systems

Belarusian State University

Minsk, Belarus

mazovka@bk.ru

Victor Krasnoproshin

Department of Information Management Systems

Belarusian State University

Minsk, Belarus

krasnoproshin@bsu.by

Abstract—Modern computer graphics is a large and complex

area of technology. In this paper we analyse the problem of scene

image synthesis. We propose a general approach to using

graphics pipeline for rendering that preserves its flexibility

while improving the efficiency of development.

Keywords—computer graphics, graphics pipeline, graphics

engine

I. INTRODUCTION

In today's world of rapidly developing technology, the
capabilities of graphics hardware are reaching unprecedented
heights. We can visualize immersive 3D worlds and simulate
complex mathematical models. At the heart of these advances
are two fundamental pillars: the graphics pipeline and
graphics engines. And while these technical components are
the basis for our ability to create images, they also present
significant technical challenges for developers and designers.

At first glance, the concept of a graphics pipeline may
seem simple – it is a sequence of operations that transform
source data into an image. However, the low logical level of
abstraction of these operations quickly grows into a complex
web of interconnected steps, each of which requires high
attention to detail. Building a specialized graphics pipeline for
a specific rendering task requires a deep understanding of
graphics programming [1].

In addition, the complexity of programming the graphics
pipeline increases with the constant development of graphics
hardware. Modern GPUs include multiple processors that
execute multiple tasks in parallel [2]. And the correct and
optimal use of this capability requires advanced skills in
building a pipeline. Over time, new technologies push for
constant change in established processes and make graphical
programming a continuous learning experience [3].

Due to the difficulties of programming the graphics
pipeline, many developers use graphics engines to solve their
problems. Graphics engines such as Unity [4], Unreal Engine
[5] or Godot [6] provide a set of tools and frameworks to
simplify the development process. They promise more
efficient development cycles, a standard rendering pipeline,
and usable models and assets. However, these benefits also
come at a price.

Despite the undeniable advantages of graphics engines,
their use can impose restrictions on the flexibility and
specialization of the project. Not every visualization problem
can easily fit within the engine's standard constraints. Users
may find it difficult to work with a rigid system that does not
support the unique requirements of the problem. This question
of balancing flexibility and convenience often confronts
developers when considering using engines in their projects.

In this article we propose an approach to solving
visualization problems that reduces the impact of the
limitations described above. This approach reduces the

complexity of using the graphics pipeline and at the same time
fully maintains its flexibility. To understand the essence of
this method, let’s first analyze the composition of the
visualization problem.

II. ANALYSIS OF VISUALIZATION PROBLEM

Given some abstract model M, it is required to develop an
algorithm that, based on abstract objects of the model, builds
a two-dimensional graphic image Image. We will call such an
algorithm a model visualization algorithm ModelRender:

 ModelRenderer: M → Image ()

Let us formalize the described visualization problem.

A set of visualized objects of model M we will call a scene:
Scene = {Objecti}. Model M in general is not limited to the
scene and can contain arbitrary processes, parameters, and
objects that do not produce visual images. An example of such
processes is physics simulation, which affects the change of
Image over time, but is not directly involved in rendering.

By SceneRender we will denote the algorithm for
visualizing the scene at time t:

 SceneRenderer: Scenet → Imaget ()

This rendering model is easy to analyse, but it does not
completely cover ModelRender, since rendering the entire
model may involve iterative changes. That is, the result of
previous visualizations can be used as input for subsequent
ones. Taking this into account, let's clarify the definition of
SceneRender:

 SceneRenderer: Scenet, Imaget-1, … → Imaget ()

Let us consider the state of the scene at a certain point in
time; in general, the scene visualization algorithm can be
decomposed into smaller visualization algorithms Renderi:

 Renderi: Objects, Images → Imagei,t

 Objects Scenet

 Images = {Image1, Image2, …}

 SceneRender = Render1 … Rendern : Scenet, Imaget-1,
Imaget-2, … → Imaget ()

The possibility of decomposition depends on the specific
model M, with two degenerate cases possible. First: the scene
visualization algorithm is radically decomposed in such a way
that each object is visualized by a separate small algorithm:

 SceneRender = Render1 … Rendern

144

 Renderi: Objecti → Imagei ()

And the second case is when the scene visualization
algorithm cannot be presented as a composition of smaller
algorithms:

 SceneRender = Render ()

In further analysis, we will assume that decomposition of
the scene visualization algorithm is possible, and the number
of small algorithms is less than the number of scene objects.

Specific smaller algorithms, and the scene visualization
algorithm as a whole, can be viewed as projections from a set
of objects and images into a set of images:

 Render: Objects, Images → Images ()

And the goal of the visualization problem is to construct a
scene visualization algorithm in the form of a composition of
smaller visualization algorithms. The resulting SceneRender
is a solution to the visualization problem.

The general scheme for solving the visualization problem
can be presented as follows:

1. Identify dependencies between the results of scene
visualization in a sequence of model iterations.

2. For each iteration, identify subsets of scene objects
that can be rendered in a consistent way.

3. For each of these subsets, construct a corresponding
visualization algorithm.

4. If the scene rendering has intermediate dependencies
between algorithms for rendering subsets of objects,
determine such dependencies.

5. Construct the final algorithm for visualizing the
scene as a composition of algorithms for visualizing
subsets of objects, taking into account dependencies
on intermediate results and the results of previous
iterations of the model.

The above steps are extremely general. This is primarily
due to the fact that the number of practical visualization
problems and their variations is extremely large. Any
visualization problem can be solved in many different ways,
so often some kind of optimization function is applied to many
different solutions. For example, if the solution is supposed to
be implemented on some hardware platform with limited
resources. Or, when optimizing for the speed of execution, it
becomes necessary to take into account the operating features
of the selected platform.

III. PROCEDURAL GRAPHICS PIPELINE PRIMITIVES

Let's consider the visualization problem in the standard
form described above. In order to further analyse the solution,
we need to bring the visualization algorithms to the
formalisms of the graphics pipeline. That is, given that the
implementation of visualization algorithms will be carried out
using a graphics pipeline, we need to show how the objects
and methods of the pipeline relate to the algorithmic solution
of the visualization problem.

In general, graphics pipeline can be thought of as a black
box, the input of which is data and instructions, and the output
is an image.

To put it simply, we can assume that every time we need
to generate an image, we need to provide the necessary data
and instructions and start the pipeline. In practice, between
different pipeline calls its state is not completely cleared. For
example, it would be impractical to load gigabytes of
geometry data into graphics card memory for each pipeline
run. And also, when using multithreading, it makes no sense
to idle the pipeline waiting for each image to be generated. But
even taking into account such features, the software interface
of the pipeline is modelled according to the principle outlined
above and logically we will consider image generation on the
pipeline as the following function:

 Pipeline: Data, Instructions → Image ()

Where Data is the input data of the pipeline, Instructions
is the sequence of instructions, and Image is the resulting
image.

We can map scene objects onto pipeline datasets in the
following way:

 Objecti → (Data1, Data2, …, Datan) ()

That is, each scene object is associated with an ordered set
of pipeline data. Let's denote the set of all data of all scene
objects Scene by SceneData:

 Scene = {Object1, Object2, …}

 Objecti → (Datai1, …, Datain)

 SceneData = {Data11, …, Data1n, …, Datamn} ()

Images are also represented by pipeline data, specifically
frame buffers, when output is produced to them. If an image
is used for rendering, then it is represented by a texture.

Rendering algorithms for a visualization task in standard
form in a pipeline are represented as independent sequences
of instructions:

 Renderi → (Set1, …, Set1n, Draw1, …, Drawk) ()

In two degenerate cases we will have either each Render
containing a single Draw call, and one single Render
containing all Draw sequences for the entire scene.

Note that on a pipeline, executing such a sequence of
instructions does not automatically generate a frame, or
image, that could be used for subsequent operations. So,
unlike the Object and Render above, the Image on the pipeline
can be represented using:

1. Nothing, if the result of the rendering algorithm on
the pipeline is trivially combined with the rest of the
results.

2. An execution buffer, if the rendering algorithm is
entirely placed in such a pipeline object, and is
subsequently trivially combined with other results.

145

3. Frame buffer and texture, if the result is used by other
algorithms or in subsequent iterations.

That is, the representation of an Image on the pipeline
depends on how the rendering algorithms interact with each
other in solving the visualization problem.

As an example, consider the deferred rendering algorithm.
The deferred rendering algorithm allows you to efficiently
render a large number of light sources simultaneously. To do
this, the visualization process is divided into several stages:
geometric pass, lighting pass, and combination. During the
geometry pass, objects in the scene are rasterized and auxiliary
depth, normal, and material maps are generated for each pixel
in the image. Each rendered light source then uses these maps
to calculate that source's contribution to the illumination of
each pixel. The contribution of each light source is
accumulated in the light buffer. Ultimately, the auxiliary
buffers and the lighting buffer are combined to produce the
final pixel colour of the image.

1. For all objects in the scene, calculate the depth,

normal and material maps for each screen pixel.

2. For each light source, output the lighting

contribution to the lighting buffer in turn.

3. Using the resulting buffers, calculate the final

image.

See schematic representation on Fig. 1.

And as an expression:

 Scene = {Objects, Light1, …, Lightn}

 RenderA(Objects) → DepthMap, NormalMap, MaterialMap

 Sumi=1,n(Renderi(Lighti, DepthMap, NormalMap,
MaterialMap)) → LightBuffer

RenderFinal(LightBuffer, MaterialMap) → Image ()

Similar diagrams and expressions can be produced for all
kinds of visualization algorithms, including post-processing,
screen space ambient occlusion (SSAO), reflections, shadows,
and the like. In each case, you can notice similar patterns,
which can be described as follows:

1. Select a subset from the original set of objects.

2. Using this subset, execute a set of instructions on

the pipeline.

3. The result of execution on the pipeline can either

be used in subsequent operations or output as the

final result.

The class of operations corresponding to object subset
selection will be denoted as Sample procedure. Rendering
operations will be denoted as Render procedure. In principle,
even these two procedures cover the rendering expression
above, however, you can notice that in some cases rendering
operations work exclusively with images or frames [7]; this
type of operation can be separated into a different class – the
Blend procedure.

This set of procedures logically breaks the visualization
problem into smaller fragments using the decomposition
principle as on Fig. 2.

With this classification, by using Sample, Render, and
Blend procedures, the complexity of the problem, which hides
in the relationships between the various subproblems, can be
written explicitly. And such connections can be formally
standardized in the future, such as, for example, using the
concept of object shaders, which we discussed in our previous
works [8, 9, 10].

IV. CONCLUSIONS

The problem of visualization is a pressing problem
nowadays. In this article we explored an approach to solving
it that has two contradictory properties: it maintains the
flexibility inherent in the graphics pipeline, and also reduces
the complexity of development, which makes it similar to
using a graphics engine.

We have shown how the analysis of a visualization
problem and pipeline tools in general generates a set of
procedures by which the solution to the problem can be
expressed in a simpler form.

The proposed approach forms the basis for an extension of
the programmable graphics pipeline that we considered in our
previous works [7, 8, 9, 10].

Fig. 1. Schematic representation of the deferred rendering algorithm

146

REFERENCES

[1] Microsoft, DirectX 12 Programming Guide,
https://docs.microsoft.com/en-us/windows/win32/direct3d12/what-is-
directx-12-.

[2] David B. Kirk, Wen-mei W. Hwu, Programming Massively Parallel
Processors, 2nd ed., Morgan Kaufmann, 2013, pp. 23–39.

[3] Ron Fosner, Real-Time Shader Programming, Morgan Kaufmann,
2003, pp. 88–111.

[4] Unity, Unity Technologies. https://unity.com/.

[5] Unreal Engine, Epic Games. https://www.unrealengine.com/en-US/.

[6] Godot, Godot Foundation. https://godotengine.org/.

[7] V. Krasnoproshin and D. Mazouka, “Frame Manipulation Techniques
in Object-Based Rendering” Communications in Computer and
Information Science, vol. 673: “Pattern Recognition and Information
Processing”, Springer, 2017, pp. 97–105.

[8] V. Krasnoproshin and D. Mazouka, “Graphics Pipeline Evolution
Based on Object Shaders” Pattern Recognit. Image Anal. 30, 2020, pp.
192–202, https://doi.org/10.1134/S105466182002008X.

[9] V. Krasnoproshin and D. Mazouka, “Data-Driven Method for High
Level Rendering Pipeline Construction”, Neural Networks and
Artificial Intelligence. Communications in Computer and Information
Science, vol. 440, pp. 191–200, 2014.

[10] Krasnoproshin, V., Mazouka, D. A New Approach to Building a
Graphics Pipeline for Rendering. Pattern Recognit. Image Anal. 32,
282–293 (2022). https://doi.org/10.1134/S1054661822020134.

Fig. 2. Problem decomposition using procedures

https://docs.microsoft.com/en-us/windows/win32/direct3d12/what-is-directx-12-
https://docs.microsoft.com/en-us/windows/win32/direct3d12/what-is-directx-12-
https://unity.com/
https://www.unrealengine.com/en-US/
https://godotengine.org/
https://doi.org/10.1134/S105466182002008X
https://doi.org/10.1134/S1054661822020134

