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Abstract—2D Human Pose Estimation is an important task in
computer vision. In recent years, methods using deep learning
for human pose estimation have been proposed one after another
and achieved good results. Among existing models, the built-in
attention layer in Transformer enables the model to effectively
capture long-range relationships and also reveal the dependen-
cies on which predicted key points depend. SimCC formulates
keypoint localization as a classification problem, dividing the
horizontal and vertical axes into equal-width numbered bins,
and discretizing continuous coordinates into integer bin labels.
We propose a new model that combines the Swin Transformer
training model to predict the bin where the key points are located,
so as to achieve the purpose of predicting key points. This method
can achieve better results than other models and can achieve sub-
pixel positioning accuracy and low quantization error.

Index Terms—Human Pose Estimation, Swin Transformer,
SimCC

I. INTRODUCTION

Human pose estimation(HPE) is one of the key tasks in
computer vision, which aims to identify different human
instances in multimedia data and to locate a predefined set
of human anatomy key points for each person. It has many
important and promising applications, including behavioral ac-
tion recognition, motion capture, human-computer interaction,
and autonomous driving. Currently, 2D human pose estimation
faces various challenges such as character entanglement, body
size differences, and clothing. Based on this, a lot of work
has been devoted to obtaining better feature representation
and distinguishing the correct poses. However, these models
generally suffer from high computational costs and limited
generalization capabilities.

As the recognition effect of the DeepPose method proposed
by Toshev et al. [1] is far better than that of traditional
methods, many people began to shift the research on human
pose estimation from traditional methods to deep learning
methods. Current human pose estimation methods generally
use deep convolutional neural networks to extract features to
replace manual feature extraction.

According to the different representations of key points,
detection methods can be divided into coordinate regression-
based and heatmap-based detection methods. The method
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Fig. 1. Comparisons between the proposed SimCC and 2D/1D heatmapbased
pipelines.

based on coordinate regression directly predicts the coor-
dinates of key points of the human body in the image.
However, the human pose estimation task is a highly nonlinear
problem, so this type of method has obvious limitations and
poor generalization ability. The method based on heat map
detection aims to predict the approximate location of key
points, using an improved deep learning network to generate
accurate heat maps. The location of key points is represented
by a two-dimensional Gaussian distribution centered on the
key point location, which can be better represented The key
point information of human body parts has better robustness.
However, the prediction accuracy depends on the heat map
resolution, the calculation amount is large, and the detection
speed is slow.

In addition to the above two methods, the paper [2] proposes
a new method for human pose estimation called SimCC.
This method reconstructs the coordinate prediction problem
into two classification tasks, targeting horizontal and vertical
coordinates respectively. By evenly dividing each pixel into
several intervals (larger than the original width and height), it
achieves sub-pixel positioning accuracy and low quantization
error. This approach eliminates the need for computationally
expensive upsampling layers and additional post-processing,
resulting in a simpler and more efficient HPE pipeline.

Recently, Transformer [3] and its various variants orig-
inating from natural language processing have become a
new choice for various computer vision tasks. It has been
widely used in target detection, semantic segmentation, video
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understanding, and pose estimation compared with CNN.
Transformer has a larger receptive field, more flexible

weight setting method and global modeling ability of features,
and has the potential to provide higher quality feature input for
downstream tasks. The traditional Transformer structure only
generates output feature maps within a single scale, which
cannot be directly used for human posture estimation tasks,
and has high computational complexity and large memory
consumption. And experiments have proven that using multi-
head self-attention can improve performance [3].

In order to take advantage of Transformer’s remote depen-
dency capture capabilities and avoid excessive memory con-
sumption, we choose Swin Transformer [4] as our backbone.
Next, we fused Swin Transformer with SimCC and proposed a
novel human pose estimation model. A convolutional layer, a
fully connected layer and a , Gated Attention Unit(GAU) [17]
are added between the backbone of Swin Transformer and
SimCC, achieving better results compared with other Swin
Transformer-based models.

Fig. 2. Regression Methods.

Fig. 3. Heatmap-based Methods.

II. RELATED WORK

A. Human Pose Estimation

HPE methods based on deep learning have achieved many
excellent performances. An efficient network structure not only
has a small number of parameters and fast convergence speed,
but also is easy to predict the location of key points. Therefore,
many scholars have optimized and improved the network struc-
ture of deep convolutional neural networks applied to human
posture estimation. Wei et al. [5] proposed a Convolutional
Pose Machines (CPM) network, which uses a convolutional
neural network to learn image texture information and spatial
information. Prior to this, many scholars used convolutional
neural networks to extract the texture of images. Information,
using graphical models or other models to express the spatial
relationship between various parts of the body, does not use
both types of information at the same time. Wei et al. [5] use
a convolutional neural network to learn these two features at

the same time, making the learning effect better and having
Helps end-to-end learning. After continuous refinement, a
more accurate prediction value of the key point heat map will
eventually be obtained. With the proposal of the residual net-
work, Newell et al. [6] designed a stacked hourglass network.
This network It is also a multi-stage structure, consisting of
multiple stacked hourglass structures. Each hourglass structure
contains the process from high resolution to low resolution and
from low resolution to high resolution to estimate key points
of human posture at different scales heat map information. On
this basis, Yang et al. [7] added the pyramid residual module
to enhance the robustness of the deep convolutional neural
network to scale changes. In addition, Chu et al. [8] improved
the residual unit to make branch filtering The device has a
larger receptive field of view, and uses the improved residual
unit structure to learn multi-scale features, further improving
the accuracy of key point heat map prediction. Wang et al.
[9] proposed a data enhancement method for learning random
mixed images, which improves the robustness of key point
detection in pose estimation under various damaged data (such
as blur and pixelation).

B. Scheme

2D HPE methods based on deep learning have achieved
many excellent performances. Carreira et al. [10] proposed
a general coordinate regression framework, using GoogleNet
as the backbone network to jointly learn output features and
input features, and model input features and output features
at the same time. In order to make full use of the structural
information inside the human body posture, Shuang et al.
[11] proposed a structured perception regression method. This
method uses re-parameterized bones instead of key points to
express the human body posture. The bones have the intuition
and stability of the human body. It can better express the
human posture structure. The method proposed by Mao et al.
[12] with the help of the attention mechanism in the converter
can adaptively focus on the features most relevant to the target
key points, which to a large extent solves the problems of pre-
vious regression-based methods feature misalignment problem
and significantly improves performance. Lifshitz et al. [13]
jointly generate the final pose estimation result through key
point detectors and inference key point relationships. During
key point detection, this method uses dilated convolution and
deconvolution layers to improve the resolution of the feature
map output by the model. This can effectively expand the
convolution receptive field and improve the accuracy of key
point heat map detection without increasing the number of
model parameters.

C. Transformer

Recently, Transformer and its variants have been used by
researchers for human body pose estimation. For example,
TransPose [14] uses the attention layer of Transformer to
implicitly reveal the dependencies between key points as a
model layer. Layer reasoning provides explanations for global
spatial relationships. TokenPose [15] is inspired by the ViT
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Fig. 4. The architecture of a Swin Transformer (Swin-T).

Fig. 5. Two successive Swin Transformer Blocks. W-MSA and SW-MSA
are multi-head self attention modules with regular and shifted windowing
configurations, respectively.

(Vision Transformer) model, explicitly modeling key points
into markers, and learning the constraint relationship between
visual information and key points from the image. Both
methods require a large number of Transformer encoders
but do not consider low-resolution global semantic features.
HRFormer (High Resolution Transformer) [16] uses multi-
resolution architecture design and local window self-attention
to achieve high-resolution feature representation, which has
the characteristics of low memory and low computational cost.
This method requires upsampling of low-resolution features,
resulting in the loss of spatial semantic information.

The structure of Swin Transformer is similar to ResNet
and consists of four stages. By limiting self-attention to non-
overlapping local windows, Swin Transformer significantly
reduces computational cost [4], making it suitable for down-
stream tasks. The shift window partitioning method is also
applied to achieve information communication between those
non-overlapping windows.

III. METHODOLOGY

In this section, we elaborate on the entire model structure.
The model mainly consists of two parts, one is the head
composed of SimCC, and the other is the backbone composed
of Swin Transformer. SimCC [2] provides a lightweight yet
powerful baseline. On this basis, we adopt Gated Attention

Unit (GAU) [17] to improve the feedforward network (FFN)
of our Swin Transformer. Then we used pre-training and Adam
optimization strategies to further improve model performance.
The final model architecture is shown in Fig. 6.

A. SimCC

SimCC treats the key point positioning task as two classifi-
cation subtasks of the horizontal axis and the vertical axis, and
represents the x and y coordinates of the 17 joint positions of
human pose estimation as two independent one-dimensional
vectors. Divides the horizontal and vertical axes into equal-
width numbered bins, and discretizes continuous coordinates
into integer bin labels. The model is then trained to predict the
bins where the key points are located. The SimCC structure is
very simple, using only a 1 × 1 convolutional layer to convert
the features extracted from the backbone into vectorized
keypoint representations, and using two fully connected layers
respectively to perform classification. Through a large number
of bins, the quantization error can be reduced to the sub-pixel
level, thereby achieving sub-pixel positioning accuracy.

B. Module

a) Pretraining: Pretraining the backbone using a
heatmap-based approach can improve model accuracy, so our
model uses the published pretrained weights of the original
Swin Transformer model pretrained on ImageNet22K.

b) Optimization Strategy: We choose Adam Optimizer
as the optimizer. Adam Optimizer has the advantages that the
size of parameter update does not change with the scaling of
the gradient size, the boundary of the step size when updating
parameters is limited by the setting of the step size of the hyper
parameter, and does not require a fixed objective function.

c) Self-attention module: We adopt a variant of trans-
former, Gated Attention Unit (GAU) [17], which has faster
speed, lower memory cost and better performance than ordi-
nary transformer. Specifically, GAU uses Gated Linear Unit
(GLU)to improve the feed forward network (FFN) in the
transformer layer. The attention mechanism form:

U = ϕu (XWu)

V = ϕv (XWv)

O = (U ⊙AV )Wo

(1)
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Fig. 6. SimCC pipeline.

where ⊙ is the pairwise multiplication (Hadamard product)
and ϕ is the activation function. In this work we implement
the self-attention as follows:

A =
1

n
relu2(

Q(X)K(Z)T√
s

), Z = ϕz(XWz) (2)

where s = 96, Q and K are simple linear transformations,
and relu2 (·) is ReLU then squared.

d) Backbone: The Swin Transformer network extracts
the internal structure information of the image block through
the internal Block. The self-attention in the Block obtains
the hyper spectral image by calculating the score of the
feature map matrix information representing one band and
the feature map matrix information representing other bands
the relationship between each band. The Swin Transformer
network model contains 4 stages. Each stage consists of a
Patch merging and several Swin Transformer Blocks. Each
stage will reduce the resolution of the input feature map and
expand the receptive field layer by layer like CNN. Among
them, Patch merging The module performs down sampling
before the start of Stage to reduce the image resolution.

Swin Transformer Block consists of multi-layer perceptron
(MLP), layer normalization (layerNorm), window multi-head
self-attention layer (W-MSA) and sliding window multi-head
self-attention layer(SW-MSA), shown in Fig. 5. MLP consists
of input layer, hidden layer and output layer, used for tensor
reshaping. LayerNorm is used to normalize the data, that is,
calculate the mean and variance on each sample. W-MSA
is used for tensor reshaping calculate attention under one
window. In order to better interact with other windows, SW-
MSA is introduced in Swin Transformer. Both use global
context information to encode each band to capture the
interaction between each band of the hyper spectral image
relationship. The number of Blocks contained in each layer
of Swin Transformer is an integer multiple of 2, one layer
is provided to W-MSA, and one layer is provided to SW-
MSA. The increase in the number and value of Blocks in
Swin Transformer will improve the classification accuracy
to a certain extent. However, considering the model size
and computational complexity as well as the experimental
hardware, the number of Blocks used in each layer of the
Swin Transformer network structure in this article are 2, 2, 6,
and 2 respectively.

IV. EXPERIMENTS

A. Dataset

he COCO dataset [18] contains more than 200,000 images
and 250,000 human body instances with 17 key points. The
model was trained only on the COCO train2017 data set
without additional training data, and was tested on the val2017
data set and test2017 data set. These three sub-datasets contain
57,000, 150,000 and 5,000 images respectively.

B. Evaluation metric

Object Keypoint Similarity (OKS) is to calculate the similar-
ity between the predicted human body key points and the real
human body key points. Its calculation equation is as shown
in:

AP =

∑
p δ(OKS > s)∑

p 1
(3)

Average precision (AP) is an indicator that measures the
accuracy of key points, and is calculated as shown in (4).
mAP (MeanAveragePrecision) is to calculate the mean value
of AP of all key points.

OKS =

∑
i exp(−

d2
i

2s2k2
i
)δ(vi > 0)∑

i δ(vi > 0)
(4)

where d2i is the Euclidean distance between the i-th pre-
dicted keypoint coordinate and the corresponding groundtruth,
vi is the visibility flag of the keypoint, s is the object scale,
and ki is a keypoint-specific constant.

C. Settings

The experiment was completed on the Google colab plat-
form. The PyTorch 2.0.1 deep learning framework was built
in the Ubuntu 20.04 system. The Python language version
was 3.10.12 and the GPU was NVIDIA A100-SXM4-40GB.
We set the batch size to 32, the number of epochs to 200,
the sliding window size to 7×7, and the initial learning rate
experiment to 5e-5.

D. Results

We compare our results with other human pose estimation
models, including Residual Steps Network (RSN), Swin-T,
and Residual Network (ResNet), and show the results in
Table 1. As shown in the table, when the input image size
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TABLE I
COMPARISON ON THE COCO VALIDATION SET∗

Method Backbone Scheme Input Size AP AP50 AP75 AR AR50

ResNet 50 ResNet 50 Heatmap 256x192 0.715 0.897 0.791 0.771 0.935
ResNet 50 ResNet 50 Heatmap 384x288 0.724 0.899 0.794 0.777 0.936

RSN-18 RSN-18 Heatmap 256x192 0.704 0.887 0.781 0.773 0.927
RSN-50 RSN-50 Heatmap 256x192 0.724 0.894 0.799 0.790 0.935

ResNet 50 ResNet 50 SimCC 256x192 0.721 0.897 0.798 0.781 0.937
ResNet 50 ResNet 50 SimCC 384x288 0.735 0.899 0.800 0.790 0.939

Swin-T Swin-T Heatmap 256x192 0.724 0.901 0.806 0.782 0.940
Ours Swin-T SimCC 256x192 0.733 0.908 0.807 0.790 0.942

∗Results on COCO val2017 with detector having human AP of 56.4 on COCO val2017 dataset.

is consistent, our model achieves better results in both AP
and AR. Compared with the original Swin-T model, AP has
increased by 0.009 and AR has increased by 0.008.

V. CONCLUSION

In this paper, we propose a new method for 2D human pose
estimation that integrates Swin transformer and SimCC. This
model takes advantage of SimCC’s advantage over heatmap-
based representation in terms of model performance, combined
with Gated Attention Unit, and is modified from the original
Swin transformer model. Experimental results show that this
model is better than the original swin transformer model. Cur-
rent lightweight work on human pose estimation models can
significantly reduce the model’s inference cost and increase the
inference speed. The next step will be to study the application
of knowledge distillation in human posture estimation to strike
a balance between computational cost and high performance
to adapt to the requirements of limited computing resources.
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