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Abstract—Inverse problems (IP) of indirect measurements 

are a class of IP encountered in most modern nature science 

experiments. Unfortunately, they are characterized by a 

number of properties making them hard to solve: they may be 

ill-posed or even incorrect, non-linear, and often they are 

characterized by high dimension by input and/or by output. As 

such, IP of indirect measurements require special methods to 

solve them. One of the classes of such methods are methods of 

machine learning (ML), which however possess special 

properties which should be taken into account when using 

them. In this paper, the authors suggest an outline of a special 

methodology, which can become the base for a standard 

scenario for processing data of indirect measurement IP with 

ML methods. The main notions underlying this methodology 

are also described and explained. 
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I. INTRODUCTION  

The times when a scientist had an opportunity to measure 
directly the quantities he was interested in, seem to be gone 
forever. Nearly every nature science experiment nowadays 
provides indirect measurements – scientists measure the 
quantities they are able to measure, and then they have to 
solve the problem of restoration of the quantities they are 
interested in from those measured in experiment. Nearly the 
same often refers to computational science or computational 
experiment – the results of such computations most often 
require a method of transfer to the desired quantities. 

From the mathematical point of view, the studied object 
implements the direct function Y=F(X) performing transfer 
from the studied quantities – parameters X (which are 
primary) to those measured or calculated during real or 
computational experiment – the observed values Y (which 
are secondary). This means that a scientist performing real 
experiment or calculation of the direct function encounters a 
problem of the inverse transfer, i.e., the problem of 

estimation or approximation of the inverse function X=F-1(Y) 
– an inverse problem (IP). Such problems require special 
methods to solve them. 

The problem is that IP possess specific properties [1]. 
They may be ill-posed or even incorrect, and IP of indirect 
measurements are often non-linear, they often have high 
dimension by input and/or by output. For this reason, 
elaboration of a special methodology for solving high-
dimensional multi-parameter IP of indirect measurements 
may be useful for a wide range of scientists who encounter 
such problems, and it was the goal of the present study. The 
study is based on the large experience of the authors in 
solving IP of the considered type from two problem 
domains: exploration geophysics (EG) [2] and optical 
spectroscopy (OS) [3]. 

II. GENERAL APPROACHES TO SOLUTION OF INVERSE 

PROBLEMS WITH MACHINE LEARNING METHODS 

There are two in principle different general approaches to 
the solution of IP of the considered type with ML methods, 
and one intermediate approach. This classification was first 
introduced in [4, 5]. 

A. Model-based Approach 

Here we assume that an adequate model of the direct 
function Y=F(X) is available. Such model may be an 
analytical formula or a result of computational solution of the 
direct problem. This means that we can obtain training, 
validation, and test sets with necessary representativity to 
build ML models to approximate the inverse function  
X=F-1(Y) with necessary precision. However, the obtained 
solution of the IP will be only as adequate as the initial 
model of the direct function. 

An example of the class of IP where the model-based 
approach is effectively used are the IP of exploration 
geophysics – e.g., gravimetry, magnetometry and 
magnetotelluric sounding [6-8]. 
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B. Experiment-based Approach 

The opposite situation is when no adequate model of the 
direct function is available, but when we have an array of 
patterns (X, Y) describing the object of the study, obtained in 
experiment. In this case, the relevancy of the patterns is 
ensured by the experiment (to the extent of the experimental 
error) – contrary to the model-based approach, no special 
notions or a priori information are used to obtain the data. 
However, in many cases the amount of data within the 
experiment-based approach may be insufficient to provide 
the necessary representativity of the datasets necessary to use 
the ML methods, thus making reduction of the input 
dimensionality of the problem nearly obligatory. 

An example of the class of IP where the experiment-
based approach is effectively used are the IP of spectroscopy, 
especially optical spectroscopy of liquid objects where no 
analytical or computational solution of the direct problem are 
available – optical or IR absorption spectroscopy, Raman 
spectroscopy, fluorescence spectroscopy [9-11]. 

C. Qusi-Model Approach 

This intermediate approach has to be used in the worst 
case when neither an adequate model of the direct function, 
nor a large enough amount of the experimental data are 
available. Then the only way out is the following: attempt to 
construct a so-called quasi-model of the direct function based 
on the small amount of the experimental data that is 
available. Usually, such model is a statistically based one, or 
an approximation one, in contrast to a substantial subject 
area informed model used within the model-based approach. 
The quasi-model can be also used to provide the necessary 
amount of data, with necessary representativity. However, 
the IP solution obtained within the quasi-model approach can 
be only as adequate as the quasi-model is.  

It is interesting to note, that since this classification was 
first introduced in 2002 [4, 5], the authors of this study had 
only a few examples of relatively successful application of 
the quasi-model approach. Usually transfer from the 
experiment-based approach to the quasi-model approach did 
not lead to any improvement in the IP solution quality, 
independent on the method that was used to build the quasi-
model to solve the direct problem: different kinds of 
interpolation or various ML methods. It was only in 2021 
[12], 2022 [13], and 2023 [14] when we have demonstrated 
that use of variational autoencoders (VAE) as quasi-models 
can yield stable positive effect: when the experimental 
dataset was expanded by the artificial data generated by VAE 
built on the experimental data, the error of the solution of an 
IP of optical spectroscopy was substantially reduced. 

III. TYPES OF INTEGRATION 

The main emphasis in the developed methodology is on 
the integration of three types – the integration of data, 
algorithms and physical methods.  

The grounds for using integration are as follows.  

Integration of data by cross-validation or other types of 
bagging allows one to take into account variability of data in 
an optimal way, especially in the case when the amount of 
data available is relatively small.  

Integration of algorithms by ensembling using algorithms 
differing from each other is based on the fact that errors of 
different algorithms are uncorrelated. In this situation, 

combining the answers of various algorithms within an 
ensemble allow the algorithms to partly compensate the 
errors of each other.  

Both above types of integration are well known, and they 
are often used to solve any type of problems with ML, not 
only the IP. 

Less trivial is the integration of physical methods (IPM). 
It is based on the fact that when used to determine the same 
set of IP parameters, various physical methods may bring 
different information. Their joint use may allow one to 
utilize all this information simultaneously.  

However, there is a possible shortcoming in using the 
IPM for high-dimensional IP. Direct combining of the 
physical methods by simultaneous use of their data leads to a 
several-fold increase in the input dimension of the problem, 
thus significantly worsening the ratio between the number of 
patterns and the number of input features, which may be 
critical for many types of ML methods (e.g., for neural 
networks). So, this situation increases the requirements for 
reduction of the input dimensionality of the problem.  

As a result, IPM is not always effective. Previous studies 
of the authors demonstrated that IPM is effective when the 
results provided by the combined methods separately are 
comparable [8, 15]. If one method gives much smaller IP 
solution error than the other one, then the “strong” method 
alone may outperform the results of IPM [16, 17]. 

IV. METHODS OF REDUCTION OF THE DIMENSIONALITY OF A 

PROBLEM 

For the high-dimensional multi-parameter IP, both types 
of dimensionality reduction should be discussed – by input 
and by output. 

Methods of input dimensionality reduction may be 
divided into two main groups: feature selection and feature 
extraction methods. Among the main merits of feature 
selection is the opportunity of analysis of the selected most 
significant features from the point of view of the subject area 
of the problem. Such analysis may provide the scientist with 
additional information about the studied object. 

Feature selection method are in their turn usually divided 
into three large groups: filter methods, wrapper methods, and 
embedded methods.  

Filter methods are based on comparison of relevance of 
input features in respect to a specific output feature 
separately, one by one; the relevance is usually estimated 
with the help of statistical methods (e.g., correlation). 
Possible multicollinearity of the input features (that may be 
also estimated by cross-correlation of the features) may 
require to be taken into account separately [18]. 

Wrapper methods are based on repeated solution of the 
studied problem on various subsets of the input features – 
e.g. by gradual adding or by gradual discarding them. 

Finally, embedded methods are based on the solution of 
the studied problem with an ML method with subsequent 
analysis of the method coefficients (e.g. neural network 
weight analysis or analysis of regression coefficients). 

A more detailed description of feature selection methods 
may be found elsewhere [19]. 
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Feature extraction methods provide transfer of the input 
data into another feature space using some transformation of 
the features (e.g., principal component analysis, Fourier or 
wavelet decomposition). Such methods allow only indirect 
analysis of importance of initial features, but they are usually 
able to provide a greater reduction in the input 
dimensionality of the problem. 

As for the output dimensionality of the multi-parameter 
IP, there are also several ways to deal with it. Here we may 
distinguish autonomous, group/simultaneous, and sequential 
determination of parameters [20]. 

The simplest and most obvious way to solve an N-
parameter IP is by solving N separate single-parameter IPs. 
In this case, each of the N partial problems is simpler, but we 
have to solve N problems instead of one and in this way, we 
do not take into account possible interconnections among the 
output features. 

The opposite approach is to try solving the multi-
parameter IP “as is”, using muti-output ML methods. Such 
methods may take into account the interconnections among 
the output features, but they rapidly degrade with increasing 
number of the outputs. 

An intermediate way is to use the so-called group 
determination of parameters. In this case, parameters are 
combined into groups with simultaneous determination of 
the values of the parameters within each group; the groups 
are processed separately. The efficiency of this approach 
depends on the grouping – it is most effective if the 
parameters within each group have similar dependences on 
the output features, or at least they depend on mostly 
coinciding sets of the input features [20, 21]. 

Finally, the sequential determination of parameters may 
be effective if the parameters differ much in the quality of 
the IP solution in the autonomous determination mode. In 
this case we may start with determination of the parameters 
that are determined best, followed by determination of other 
parameters using the values of the parameters already 
determined as additional input features [22]. This approach is 
the one most difficult to implement.  

It should be also noted that, according to our previous 
studies, simultaneous use of group and sequential 
determination of parameters is ineffective [23]. 

V. FORMULATION OF THE METHODOLOGY 

We will present here the main provisions of the 
formulated methodology. The solution of high-dimensional 
nonlinear IP of indirect measurements using ML methods 
consists of the following main stages. 

Stage 0. Carry out planning of experimental 
measurements (in case of implementation of the experiment-
based or quasi-model approaches) or model calculations of 
the direct problem (DP) (in case of implementation of the 
model-based approach). When planning, it is necessary to 
take into account the possibility of implementing the 
integration of physical methods (IPM), for which it will be 
necessary to plan experimental studies or calculations with 
the formulation of associated IP with a common set of 
determined parameters for various physical methods. 

Stage 1. In accordance with the plan developed at Stage 
0, carry out experimental measurements or calculations of 

the direct problem, as a result of which a basic data set will 
be obtained to determine the desired parameters by solving 
the IP. Maximize the number of patterns in the base set as 
much as possible. If necessary, use the generation of 
additional data within the framework of the quasi-model 
approach. 

Stage 2. Analyze the data in the base set. Evaluate the 
number and relationship of the parameters to be determined. 
Make an initial decision about the need and ways to reduce 
the output dimension of the data. 

Stage 3. Evaluate the input dimension of the data. Make 
an initial decision about the types of lowering the input 
dimension of data (meaningful selection of input features, 
adaptive selection of input features, transformation of the 
space of input features (feature extraction)) and about their 
methods. Perform the reduction of the dimension of the input 
data. 

Stage 4. Evaluate the ratio of the number of patterns and 
the number of input features in the transformed feature 
space, as well as the variability of the data. Make an initial 
decision on the need to use integration of data – cross-
validation and other types of bagging. 

Stage 5. Evaluate the arsenal of ML methods available 
for use, implementing various ways to solve the problem, 
primarily methods of approximating the inverse function. 
Make an initial decision about which of these methods and in 
what order will be used. 

Stage 6. Build the basic solutions of the desired IP based 
on individual ML methods, in the autonomous determination 
mode, based on the data of each physical method separately. 
In the future, these basic solutions will be used as reference 
solutions. If possible, select the optimal values of the 
algorithm parameters using the grid search method. 

Stage 7. Consider the possibilities and available ways of 
integrating algorithms, primarily the construction of 
homogeneous and weighted ensembles and stacking. 
Implement the integration of algorithms and compare its 
results with reference ones. 

Stage 8. Implement, if possible, the integration of 
physical methods. Compare the results with the reference 
ones. 

Stage 9. Evaluate the effectiveness of the approaches 
used in the process of solving the problem. If necessary, 
make changes to the initial decisions made earlier in stages 
2-5 and repeat the work, starting from the corresponding 
stage. 

The sequence of actions is repeated until the desired 
result is achieved or until the available resources for solving 
the problem are exhausted. 

Some stages of the described methodology can be 
omitted depending on the specifics of the task being solved, 
as well as on the available resources. 

CONCLUSION 

This study presents an integrated methodology for 
solving high-dimensional multi-parameter inverse problems 
of indirect measurements. This methodology may be used as 
a checklist by a researcher starting to solve an inverse 
problem of the specified type. 
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