
Improving efficiency of VF3 and VF3-light
algorithms for sparse graphs

Daniil I. Dzenhaliou
Faculty of Applied Mathematics and
Computer Science Belarusian State

University
Minsk, Republic of Belarus

ddengalev@gmail.com

Vladimir I. Sarvanov
Department of Number Theory and
Discrete Mathematics Institute of

Mathematics, National Academy of
Sciences of Belarus Minsk, Republic of

Belarus
sarvanov@im.bas-net.by

Abstract—Researchers have made notable progress in improv-
ing the way we find isomorphic subgraphs in labeled or unlabeled
graphs by focusing on efficiency. One group of algorithms,
known as the VF series, has consistently shown its effectiveness,
especially when dealing with large sparse graphs. In this paper,
we introduce a new method that leverages machine learning
capabilities, aiming to improve the performance of VF3 and VF3-
light algorithms in solving the specified problem. Also, we propose
a new parallelization scheme for VF3 and VF3-light algorithms.

Index Terms—graph, algorithm, isomorphism, subgraph iso-
morphism, parallelization, machine learning

I. INTRODUCTION

The problem of subgraph isomorphism in labeled or un-
labeled graphs involves the identification of all isomorphic
induced embeddings of a ”small” graph pattern (referred to as
H) within a ”large” data graph (referred to as G). In this paper,
we refer to this task as the subgpraph isomorphism problem.
This problem has widespread applications and emerged in the
field of bioinformatics, where H represented a target subgraph
to be located within a larger biomolecule graph, with atoms (C,
H, N, O) corresponding to vertices and bonds as edges. Such
isomorphic embeddings provided insights into the properties
of these biomolecules, crucial for drug discovery and toxicity
assessments.

Subsequently, this problem found application in pattern
recognition [1]–[3], particularly in the design of complex
chips. In this context, ensuring that a design does not contain
physically impossible fragments is critical for chip manufac-
turing. Here, vertices correspond to basic components like
transistors, resistors, capacitors, and edges represent their
connections (conductors).

More recently, the problem of labeled graph isomorphism
with labeled vertices and edges has become extensively used
in social network analysis. It enables searching for various
useful subgraphs in social networks, such as friends, interest
groups, classmates, and other organized communities. These
findings have practical implications, including those related to
facilitating targeted advertising campaigns.

While the problem of isomorphism between two graphs is
efficiently solvable for planar graphs and graphs with bounded
vertex degrees, Laszlo Babai introduced a sub-exponential
algorithm for general graphs [4], suggesting that the problem

is likely not NP-complete. However, the task of searching for
a single isomorphic subgraph is NP-hard, as demonstrated by
considering H as a complete graph of order k. Furthermore,
the problem of finding all isomorphic subgraphs can produce
solution sizes that are not bounded by a polynomial in the
input size

The ”VF” series [5] algorithms are among the main al-
gorithms for solving subgraph isomorphism problem. For
example, the VF2 [6] algorithm is included as a solver in
the NetworkX [7] and Boost [8] libraries.

VF series algorithms, like most other algorithms for this
problem, are based on backtracking. Along with cutoffs, the
key role in such algorithms is played by the ordering of pattern
vertices, i.e., the order in which pattern vertices are included
in backtracking. Choosing a ”good” (ideally optimal) ordering
can improve the performance of the algorithm. In this paper,
we propose a new approach to selecting a ”good” ordering
using machine learning techniques.

II. EFFECTIVE VERTEX ORDERING

We consider a data graph G(V,E) and a pattern H(V ′, E′).
Suppose we have a certain algorithm like VF3 [9] or VF3-light
[10]. Let F be the function that assigns to each permutation the
runtime of the algorithm when the pattern vertices are executed
in the order specified by the permutation. A set of pairs
consisting of a data graph and a pattern is then formed, and the
runtime is computed for each pair. The obtained information
is used as heuristic assumptions to reduce the runtime.

The algorithm’s performance is significantly influenced by
the order in which pattern vertices are processed. Thus, the
natural question arises: how can we find an efficient vertex
ordering in a graph? We need to discover an ordering of pattern
vertices determined by the permutation P = p1, p2, ..., pn,
where n = |V ′|, that effectively reduces the algorithm’s
execution time, as determined by the function F : P → R.
Effective reduction means that the program’s execution time
with this ordering is significantly better than the average
execution time with a random vertex order.

In the VF3-light algorithm, the problem is solved by placing
vertices in a sorted list according to three criteria, in decreasing
order of priority as detailed below.

300

Vertices with a large number of outgoing edges to vertices
already selected in the list are placed at the beginning.

If multiple vertices have equal scores according to the first
criterion, vertices with the smallest number of vertices in the
subgraph that have the same or greater degree and label as the
current pattern vertex are placed closer to the beginning.

If multiple vertices meet the first and second criteria, ver-
tices with the highest degree are placed closer to the beginning.

We propose an enhancement of the previously described
algorithm. The core contribution is the integration of machine
learning techniques (graph representation learning algorithms)
with local optimal solution-finding algorithms (genetic and
simulated annealing algorithms) to enhance the graph vertex
ordering algorithm for speeding up the search for isomorphic
subgraphs.

We suggest introducing a weight vector σ = (σ1, ...σk)
that determines the influence of each value in the vertex
representation vector on its position in the ordering. For the
first three elements of the representation vector, we employ
criteria from the VF3-light algorithm.

• The number of edges outgoing from the current vertex to
vertices already ordered.

• The number of vertices in the data graph that have the
same or greater degree and label as the current pattern
vertex.

• The degree of a vertex in the pattern graph.
The remaining elements of the representation vector are taken
from specialized vertex representations, such as Node2Vec
[11], Struc2Vec [12], Role2Vec [13]. These representations
should reflect the structure of the vertex and its environment
to be suitable for (vertex degree, neighbor degrees, etc.). The
utilization of vertex representations already plays a pivotal
role in enhancing the efficiency and accuracy of various
graph-based machine learning tasks, enabling the extraction of
valuable information and patterns from individual nodes within
a network. Hence, algorithms like Struc2Vec and Role2Vec are
suitable for filling remaining elements of the representation
vector.

To generate an optimal weight vector σ, a sufficiently large
set of graphs needs to be collected so that the resulting vector
can be applied to a wide range of graphs. This dataset should
consist of pairs of datagraphs and patterns. Alternatively, the
dataset can be specialized to make the weight vector more
effective for a specific set of graphs.

In this paper, we have additionally gathered a test dataset to
assess the enhancement in performance. The pairs of graphs
used in the test dataset are generated from the same source as
the training dataset, but the datasets themselves do not overlap.

Therefore, the algorithm for efficient graph vertex ordering
can be outlined as follows:

1) Gather a set of graphs on which we will get the weight
vector σ.

2) Apply a vertex representation algorithm to each pattern
graph in the set, chosen in advance for all graphs in the
set, and save the resulting representations.

3) Use a genetic algorithm or simulated annealing algo-
rithm to get the weight vector σ.

4) Utilize the weights obtained in step 3 for efficient
ordering of other graphs. Order the vertices of the pattern
graph based on the ascending scalar product of the
weight vector σ and the vertex representation vector.

Now we turn to a detailed discussion of Step 3 of the algorithm
as we propose a variant of Step 3 using a genetic algorithm
[14]. This approach involves the following steps.

Generate a ”population” (a set of k vectors of size n), where
k is the population size, typically ranging from 10 to 100.
Perform m iterations of the algorithm (executing steps 3.1) -
3.3) is considered one iteration).
3.1) Take a random pair of vectors from the population and

perform ”crossover” - the result of the crossover for two
vectors σi and σj will be σ = (σi + σj) / 2.

3.2) Apply mutation to the vectors obtained in step 3.1) - add
a randomly generated vector σrnd independently to each
vector, with the constraint σrnd ≤ ϵ , where ϵ is a small
constant.

3.3) Add the resulting vectors to the population, calculate the
execution time value on the collected sample, and keep
only the top k vectors (with the smallest average execu-
tion time). This marks the completion of one iteration.

Note: Calculating the average execution time on all graphs
in this algorithm may lead to incorrect results. Instead, it is
suggested to use the natural logarithm of the execution time.

Next, we can provide a variant of step 3 for the
simulated annealing algorithm [14]. We define F (ω) =∑

G∈S log(time(ω,G)), where S is the set of all vectors from
the sample collected in step 1, and time(ω,G) is the execution
time of the algorithm on graph G when using the weight vector
ω.
3.1) Generate a random vector ω as the initial state. Set an

initial temperature T .
3.2) Generate a random vector ωrnd, where |ωrnd| ≤ ϵ, and

ϵ is a small constant. Check the following condition: if
F (ω + ωrnd) ≤ F (ω), then replace ω with ω + ωrnd.
Otherwise, replace it with a probability of

exp(
−(F (ω + ωrnd)− F (ω))

T
) (1)

Multiply T by a constant σ < 1.
3.3) If T ≤ ϵ′, where ϵ′ is a pre-defined threshold, terminate

the algorithm; otherwise, repeat step 3.2)
Finally, we present a version of Step 3 designed for the random
search algorithm:

Run the algorithm k times.
In each run of the algorithm, do the following:

3.1) Generate q random weight vectors ω and choose the best
one (the one where the function F takes the minimum
value).

3.2) Perform m iterations of the algorithm. On each iteration,
generate a random vector ωrnd as follows: choose a
random number s from 0 to n and set non-zero values

301

at s positions, and set zero values at the rest. Replace ω
with ω + ωrnd only when F (ω) > F (ω + ωrnd).

3.3) Choose the best weight vector ω among all values ob-
tained in the algorithm runs. This obtained value is locally
optimal after a sufficient number of algorithm iterations.

The version employing random search is used for the ex-
periments in this study due to its faster convergence rate in
practical experiments.

It should be noted that the algorithm demonstrates optimal
performance when the set of graphs collected for weight vector
tuning and the set of graphs for algorithmic application share
the same pattern graph. This similarity implicitly defines an
efficient ordering for the pattern graph, making the algorithm
useful even when paired with a different data graph. However,
the experiments conducted in this study employed varying
pattern graphs, suggesting that the algorithm also performs
efficiently under these conditions.

III. PATTERN DECOMPOSITION

We consider a data graph G(V,E) and a pattern graph
H(V ′, E′).

A partition of a graph X , denoted as X1, ..., Xk, is defined
as follows:

V X1 ∪ V X2, ...,∪V Xk = V X , for all i, j, where i ̸= j,
V Xi ∩ V Xj = ∅. Additionally, X1, ..., Xk are induced
subgraphs of graph X .

The decomposition algorithm works as follows:
1) Assume we have an arbitrary partition of the graph H

as H1, ...,Hk.
2) Find all isomorphic induced occurrences of graphs

H1, ...Hk within graph G. Denote the corresponding
subgraphs in data graph G for graph Hi as Li,1, ..., Li,ni .

3) Define graphs Qi as follows:

Q1 = L1,1, ..., Qn1
= L1,n1

, Qn1+1 = L2,1, ..., Qp = Lk,nk

(2)
where p =

∑k
i=1 ni.

4) Construct a new graph G′ as follows: Let V = 1, 2, ...p,
add an edge incident to vertices i and j, i ̸= j, if and
only if Qi and Qj correspond to different graphs Hx

and Hy , do not share any vertices, and between the
vertices of Qi and Qj in G, the same edges are present
as between the vertices of Hx and Hy in H .

5) Find all cliques of size k in the obtained graph. If a
clique contains vertices (i1, ..., ik), construct (x1, ...xk)
such that Qij corresponds to Hxj

. Then, vertices from
Qi1 in the data graph correspond to vertices of Hx1

, ver-
tices from Qi2 correspond to vertices of Hx2 , and so on.
So, each clique represents one subgraph isomorphism,
with Qij as the embeddings in the datagraph and Hxj

as the pattern.
We can now prove that this approach enables us to find all

isomorphic embeddings of H in G.
First, we aim to demonstrate that step 4 yields isomorphic

embeddings.

Since all Hxj are distinct according to step 4, this means
that the union of all Hxj

forms the graph H . All Qij

are induced embeddings of Hxj
, so all edges in Qij will

correspond to the edges in Hxj
. The vertices of Qij will

also correspond to the vertices of Hxj
. The set obtained by

combining all vertices from Hxj is equal to V H , and all
vertices from Qij1

and Qij2
are distinct for any j1 ̸= j2.

The edges between Qij1
and Qij2

, where j1 ̸= j2, will be the
same as between the components Hxj1

and Hxj2
. There are

no other edges in the graph, so the union of Qij indeed forms
an isomorphic embedding.

Now, we prove that we enumerate all isomorphic embed-
dings. We assume that some embedding is not found using this
algorithm. We find the vertices corresponding to Hi in graph
G. For each i, they form an induced subgraph Qxi . These
graphs have labels xi in the graph G′ obtained in step 4 of the
algorithm. Graphs Qi and Qj , where i ̸= j, i, j ∈ x1, ..., xk,
correspond to different subgraphs in the partition of H , do not
share vertices, and the edges between vertices of Qi and Qj

in G′ are the same as between vertices of Hi and Hj in H .
Therefore, in the graph obtained in step 4 of the algorithm, the
vertices x1, ..., xk form a clique. This leads to a contradiction.

Since the verification of the correctness of partial mapping
in one iteration takes O(N2) time, where N is the number of
vertices in the pattern, in the pattern decomposition algorithm,
this check is done in O(N

2

k) time. The additional cost in
the algorithm is the time spent on finding all cliques of
size k. However, in practice, the algorithm is well-suited for
parallelization since isomorphic embeddings need to be found
independently for all subgraphs in the partition.

IV. EXPERIMENTS

In our experiments, we utilized the Attributed Relational
Graph (ARG) Database [16], a comprehensive repository of
attributed relational graphs that represent various domains or
datasets. These graphs have been meticulously designed to
capture complex relationships and attributes associated with
nodes and edges. This makes them particularly suitable for a
diverse range of research applications, including our own. The
database encompasses a wide spectrum of domains, including
but not limited to:

• Social Networks
• Biological Networks
• Transportation Networks
• Citation Networks
In addition to graph structure, the ARG Database includes

labels associated with both nodes and edges. This labeled
data allows for more nuanced and context-aware analyses,
making it particularly valuable for understanding complex
relationships in real-world data.

The graphs within the ARG Database often mirror real-
world complexities. This characteristic makes them well-suited
for exploring the challenges posed by real-world scenarios,
enabling researchers to develop solutions that address practical
issues.

302

200 400 600
0

5

10

15

20

Number of vertices in a datagraph

Sp
ee

d
up

,p
er

ce
nt

ag
es

VF3
VF3-light

Fig. 1: VF3 and VF3-light exectution speedup using the
proposed effective vertex ordering algorithm

ARG Database consists of many different graph types. How-
ever, proposed algorithm improvements significantly improve
efficiency of VF3 and VF3-light algorithms only on specific
types.

Effective ordering improves VF3 and VF3-light perfor-
mance on bounded-valence graphs with valence = 3. At
the first plot (Fig. 1) VF3 and VF3-light execution speedup
dependence on size of a datagaraph is shown, size of a pattern
= 20% of the datagraph size.

Pattern decomposition also improves VF3 and VF3-light
performance on bounded-valence graphs with valence = 3. So,
the second plot shows the execution speedup improvement.
Pattern decomposition works efficiently when the size of a
pattern is enough big (bigger than 50% of the datagraph size)

At the second plot (Fig. 2) VF3 and VF3-light execution
speedup dependence on size of a datagaraph is presented, size
of a pattern = 60% of the datagraph size.

V. CONCLUSION

The main results and primary contributions of this paper are
as follows.

1) Modifications of the VF3 and VF3-light algorithms were
developed based on pattern decomposition, enabling ef-
ficient parallelization of computations. This paralleliza-
tion can be used for solving subgraph isomorphism
problems for large sparse graphs.

2) A new algorithm for solving the efficient node ordering
problem in a pattern graph was developed and imple-
mented. This algorithm utilizes machine learning meth-
ods, representing a novel approach to solving this prob-
lem. The proposed algorithm is used to improve VF3
and VF3-light performance and, possibly, to improve
other algorithms that solve the subgragh isomorphism
problem.

200 400 600
0

10

20

30

40

50

Number of vertices in a datagraph

Sp
ee

d
up

,p
er

ce
nt

ag
es

VF3
VF3-light

Fig. 2: VF3 and VF3-light execution speedup using pattern
decomposition

3) New modifications of the VF3 and VF3-light algorithms
were proposed, incorporating efficient node ordering for
the pattern graph. These modifications improve VF3 and
VF3-light performance on sparse graphs.

4) Conditions for the preferred use of each modification
were determined based on the analysis of experimental
results. These conditions can be used to understand
where proposed modifications are applicable. This anal-
ysis revealed that:

• The performance of the modified algorithm us-
ing decomposition is better than the performance
of standard versions of VF3 and VF3-light for
bounded-valence with valence=3 and large enough
query graphs.

• Modified algorithms using optimized node ordering
perform faster than the standard versions of VF3 and
VF3-light on bounded-valence with valence=3. It is
worth noting that VF3 and VF3-light are considered
the most suitable for application to sparse graphs

REFERENCES

[1] P. Foggia, G. Percannella, and M. Vento, “Graph Matching and Learning
in Pattern Recognition in the Last 10 Years,” International Journal
of Pattern Recognition and Artificial Intelligence, Feb. 2014, doi:
10.1142/S0218001414500013.

[2] M. Vento, “A Long Trip in the Charming World of Graphs for Pattern
Recognition,” Pattern Recogn., vol. 48, no. 2, pp. 291–301, Feb. 2015,
doi: 10.1016/j.patcog.2014.01.002.

[3] D. Conte, P. Foggia, C. Sansone, and M. Vento, “Thirty Years Of Graph
Matching In Pattern Recognition,” IJPRAI, vol. 18, pp. 265–298, May
2004, doi: 10.1142/S0218001404003228.

[4] L. Babai, Graph Isomorphism in Quasipolynomial Time. 2015.
[5] V. Carletti, P. Foggia, A. Saggese and M. Vento, ”Challenging the

Time Complexity of Exact Subgraph Isomorphism for Huge and Dense
Graphs with VF3,” in IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 40, no. 4, pp. 804-818, 1 April 2018, doi:
10.1109/TPAMI.2017.2696940.

303

[6] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “A (Sub)Graph
Isomorphism Algorithm for Matching Large Graphs,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 26, no. 10, pp. 1367–1372, Oct. 2004,
doi: 10.1109/TPAMI.2004.75.

[7] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring Network
Structure, Dynamics, and Function using NetworkX,” in Proceedings
of the 7th Python in Science Conference, 2008, pp. 11–15.

[8] Boost, Boost C++ Libraries. http://www.boost.org/, 2023. [Online].
Available: http://www.boost.org/

[9] C. Vincenzo, P. Foggia, A. Saggese, and M. Vento, “Introducing VF3:
A New Algorithm for Subgraph Isomorphism,” May 2017, pp. 128–139.
doi: 10.1007/978-3-319-58961-9 12.

[10] C. Vincenzo, P. Foggia, A. Greco, M. Vento, and V. Vigilante, “VF3-
Light: a lightweight Subgraph Isomorphism Algorithm and its Exper-
imental Evaluation,” Pattern Recognition Letters, vol. 125, Jul. 2019,
doi: 10.1016/j.patrec.2019.07.001.

[11] A. Grover and J. Leskovec, “Node2vec: Scalable Feature Learning for
Networks,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2016, pp.
855–864. doi: 10.1145/2939672.2939754.

[12] L. F. R. Ribeiro, P. H. P. Saverese, and D. R. Figueiredo, “Struc2vec:
Learning Node Representations from Structural Identity,” in Pro-
ceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, 2017, pp. 385–394. doi:
10.1145/3097983.3098061.

[13] N. Ahmed et al., “Learning Role-based Graph Embeddings,” Feb. 2018.
[14] K. Sastry, D. Goldberg, and G. Kendall, “Genetic Algorithms,” in Search

Methodologies: Introductory Tutorials in Optimization and Decision
Support Techniques, E. K. Burke and G. Kendall, Eds. Boston, MA:
Springer US, 2005, pp. 97–125. doi: 10.1007/0-387-28356-0 4.

[15] E. H. L. Aarts, J. H. M. Korst, and P. J. M. Laarhoven, van, “Simulated
annealing,” in Local search in combinatorial optimization, E. H. L. Aarts
and J. K. Lenstra, Eds. Wiley-Interscience, 1997, pp. 91–120.

[16] M. De Santo, P. Foggia, C. Sansone, and M. Vento, “A large database
of graphs and its use for benchmarking graph isomorphism algorithms,”
Pattern Recogn. Lett., vol. 24, no. 8, pp. 1067–1079, May 2003, doi:
10.1016/S0167-8655(02)00253-2.

304

