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I. INTRODUCTION 

 Over the years, the number of different types of data is 
growing and computer science has started to play an 
important role almost in every branch of science. Creation of 
the Protein Data Bank (PDB) (https://www.rcsb.org/) 
containing experimentally-determined 3D structures of 
proteins and nucleic acids, and different databases of small 
molecules like ZINC, DrugBank, PubChem, etc. has played 
an important role in the field of drug discovery, especially in 
Computer-Aided Drug Design (CADD). The term CADD 
describes a multi-disciplinary approach for a rational design 
of new chemical compounds and includes a vast variety of 
methods which use computational technologies to facilitate 
and accelerate the process of developing novel drug 
candidates [1]. Along with conventional molecular modeling 
methods, such as virtual screening, molecular docking and 
molecular dynamics, machine learning (ML) and its subfield 
deep learning (DL) have been getting more and more popular 
in CADD. Due to increasing availability of different 
biological data, quality and completeness, de novo design of 
molecules using deep generative models in combination with 
structure-based molecular modelling techniques has a great 
potential in the area of drug design ad discovery [1]. 

The main goal of this study is de novo design of small 
molecules potentially active against the KasA enzyme, β-
ketoacyl-acyl carrier protein synthase I of Mycobacterium 
tuberculosis (Mtb) which plays an important role in 
mycobacterium cell wall biosynthesis. The loss of the KasA 
activity results in the Mtb cell lysis, testifying that this 

enzyme is a valuable target for the design of novel potent 
antitubercular inhibitors [2]. 

To solve the problem, we proposed a combined 
application of two generative networks, namely Junction 
Tree Variational Autoencoder (JT-VAE) [3] and semi-
supervised generative adversarial neural network (SGAN). 
The JT-VAE model was used to produce graph embeddings 
which were used for the SGAN training. Molecules in the 
training dataset were separated into two groups according to 
their binding energy values to the target protein, low and 
high, calculated using molecular docking tools. This allowed 
SGAN to generate new molecules similar to those from the 
preferred group with the low values of binding energy.  

II. MATERIALS AND METHODS 

A. JT- VAE 

JT-VAE [3] is a VAE architecture that operates with 
molecular graph structures of compounds using specific 
encoder and decoder, while most other methods employ the 
SMILES representation [4]. The encoder is a neural network 
used to calculate a latent representation of a molecule in the 
continuous, high-dimensional latent space, and the decoder is 
a neural network used to decode a compound from 
coordinates in this space. In VAEs, the entire encoding-
decoding process is stochastic. 

In JT-VAE, each molecule is considered as a set of valid 
chemical substructures that are chosen from the component 
vocabulary which is formed from the training dataset [3]. 
These components are used as building blocks for a molecule 
during both encoding and decoding processes. Based on the 
components for each molecule, a junction tree scaffold is 
built with the specific decomposition algorithm. The original 
molecular graph and its associated junction tree are two 
complementary representations of a molecule [3]. The 
resulting latent vector of a compound is the latent vector of 
the molecular graph concatenated with the latent vector of 
the junction tree. 
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It is well known that JT-VAE generates only valid 
molecules owing to the component-by-component encoding-
decoding approach, whereas the SMILES-based generative 
neural networks also produce invalid compounds.   

B. S GAN 

GAN consists of two neural networks, generator and 
discriminator that are trained simultaneously. Generator tries 
to generate data similar to those from a training dataset, 
while discriminator attempts to distinguish between real and 
fake data. GAN is a class of unsupervised algorithms, since 
explicit labels of any class of data are not used except for 
implicit “fake” and “real” labels. 

SGAN is a GAN with additional class for discriminator 
allowing one to distinguish “low” or “high” values of 
binding free energy calculated by molecular docking 
methods. In this work, molecules exhibiting values of 

binding free energy lower than −8.2 kcal/mol were assigned 
to the “low” energy class and the others to “high”. The 
architecture of SGAN is shown in Fig. 1 where BN means 
batch normalization. 

Our approach extends SGAN to molecular embeddings 
of the latent space of JT-VAE. 

C. Target protein structure and control inhibitors 

Since the current study was aimed at de novo designing 

potential inhibitors of KasA, structures of this protein and 

several known inhibitors which would serve as a positive 

control were needed. Two inhibitors of the catalytic activity 

of KasA, thiolactomycin-based analog TLM5 [5] and 

platensimycin [6], were used in the calculations as a positive 

control. TLM5 is a slow-onset inhibitor that interacts 

preferentially with the KasA acyl-enzyme form [5] which 

has not been deposited in PDB yet. However, it was shown 

[7] that the acylated KasA intermediate can be imitated by 

the C171Q KasA mutant, as the mutation Cys-171-Gln leads 

to the structural changes in the enzyme active site 

mimicking the acylation of Cys171. The TLM5/C171Q 

KasA structure in the crystal (PDB ID: 4C72, 

https://www.rcsb.org/structure/4c72) was therefore used in 

this work. 

D. Training set preparation 

a) Pharmacophore-based Virtual Screening 

To form the training dataset, pharmacophore-based 
virtual screening of three molecular libraries from a web-
oriented platform Pharmit [8], namely Zinc15, ChemSpace, 
and ChemDiv, was carried out. Using this web tool, two 
pharmacophore models were built based on the complex of 
C171Q KasA with TLM5. Additionally, the crystal structure 
of C171Q KasA bound to TLM was also used (PDB ID: 
4C6X, https://www.rcsb.org/structure/4c6x), resulting in one 
more pharmacophore model. A number of filters imposing 
restrictions on the physicochemical parameters of molecules 
which are commonly taken as the basic criteria of their 
ability to be effective when taken orally were used during the 
screening process (Table I). Using Python 3 and mostly its 
package for cheminformatics RDKit (https://www.rdkit.org), 
duplicates were removed from the dataset and canonical 
kekulized SMILES representations were obtained for each 
compound. After the pharmacophore-based screening, the 
total number of compounds in the training dataset was 
58,000. 

 

Fig. 1. The SGAN architecture 

TABLE I.  PHARMACOPHORE SEARCH FILTERS 

M, Da LogP HBD HBA 
ΔG, 

kcal/mol 
RMSD, 

Å 

< 500 < 5 < 5 < 10 < 0 < 2 

Footnote. The following notations are used: M – molecular weight, LogP – 
compound lipophilicity, HBD – number of H-bond donors, HBA – number 

of H-bond acceptors, ΔG – binding free energy, RMSD − the root mean 
squared deviation between the query features and the hit compound features [8]. 

b) Molecular Docking 

To obtain the values of binding free energy for molecules 
from the training dataset, semi-flexible molecular docking of 
the unliganded C171Q KasA with the ligands was performed 
by the QuickVina2 program [9]. Structures of the enzyme 
and compounds from the training dataset were prepared for 
docking using the MGLTools program 
(https://ccsb.scripps.edu/mgltools/). The grid box for docking 
included the catalytic site of KasA with the following 
parameters: ΔX = 20.67 Å, ΔY = 24.8 Å, ΔZ = 16.46 Å 

centered at X = −7.24 Å, Y = −19.9 Å, Z = 6.75 Å. The value 
of the exhaustiveness parameter (i.e., the parameter defining 
the number of sampling performed by Vina) was set to 100. 
Distribution of the docking scores for the molecules from the 
training dataset is shown in Fig. 2. 

E. SGAN training 

The training dataset included 58,000 molecular graph 
embeddings from the latent space of JT-VAE. Number of 
epochs for training was 50. The probabilities of generator 
discriminator training were 0.8 and 0.2, respectively. 
Generator and discriminator loss functions Gloss and Dloss are 
given in formulas (1) and (2): 
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Fig. 2. Histogram of the distribution of binding free energy values 

calculated by molecular docking for molecules from the training dataset 
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where D is the discriminator, 𝐷𝑜𝑢𝑡1 is the output predicting 
the reality of the molecule, 𝐷𝑜𝑢𝑡2 is the output predicting the 
energy class of the molecule, G is the generator, noise is the 
vector from the standard 256-dimensional Gaussian noise, 
real_data is the vector of the molecule from the training 
data, energy_class is 1 or 0 depending on whether the 
molecule belongs to the class of compounds with low 
binding energy or not. 

The graphs of the loss functions of the generator and 
discriminator are shown in Fig. 3 with a solid blue and 
dashed red lines, respectively. Fig. 4 shows the discriminator 
predictions for 58,000 vectors from 56-dimensional standard 
Gaussian noise. In this Figure, the region of vectors that have 
a high probability of low binding energy values and are 
better than half the data in terms of the probability of being 
real is highlighted. We considered this region as the most 
promising for generation. 

F. Generation of new molecules  

50,000 vectors of length 56 were generated based on 
Gaussian noise and discriminator’s predictions on them were 
obtained. To choose a promising region, the following 
conditions were set: the probability of data reality was above 
15%, and the probability of the low energy class was above 
80%. The number of molecular vectors that met the 
conditions was 1,395 and they were fed to JT-VAE decoder 
to get their SMILES representation. SMILES duplicates were 
then removed and the validity of generated molecules was 
checked. After this step, only 419 molecules left. In addition 
to sampling from promising region, the sampling from 
unpromising area was also conducted: in this case, the 
probability of real data was below 15%, and the probability 
of low energy class was below 30%. The number of 
molecules sampled was 9,413,  

 

Fig. 3. Loss functions of the generator and discriminator for the developed 

neural network   

 

Fig. 4. SGAN discriminator predictions on vectors from Gaussian noise 

but only 452 molecules were selected after decoding step, 

testifying that the vectors which are close in “Reality – Low 

energy” space are easily decoded into the same molecular 

graph representation. 

G. 3D Structure Generation for new molecules 

3D structures of new generated molecules were derived 
from their 2D chemical sketches presented in the SMILES 
format. To do this, a stochastic algorithm for generating 
conformers ETKDG (Experimental-Torsion "basic 
Knowledge" Distance Geometry) [10, 11] from the RDKit 
package (https://www.rdkit.org) was used and the obtained 
conformations were optimized using the Merck molecular 
force field (MMFF) or the universal force field (UFF) in the 
cases when the MMFF optimization was unsuccessful. 

III. RESULTS AND DISCUSSION 

To assess the SGAN model operation, molecular docking 
of the new generated molecules to the KasA enzyme was run 
with the computational protocol identical to the one used for 
compounds from the training dataset. As a result, 87% of 
molecules from the promising region showed the values of 

binding energy lower than −8.2 kcal/mol. For all these 

compounds, the average of binding energy was −9.24 
kcal/mol, and the average molecular weight was 386 Da. At 
the same time, among the compounds from the unpromising 
region, only 10% of molecules had the energy values 
corresponding to the low class. The average energy for these 
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molecules was −7.4 kcal/mol, and the average molecular 
weight was 269 Da. 

These data showed that SGAN is able to generate new 
chemical compounds with the high affinity binding to the 
KasA protein. The fact that compounds from the 
unpromising region had a relatively small molecular weight 
correlates with the data according to which the binding free 
energy values predicted by the Vina scoring function often 
depend on the compound size (the greater molecular weight, 
the lower energy value). Therefore, the values of binding free 
energy were re-estimated in terms of scoring functions RF-
Score-4 [12] and NNScore 2.0 [13]. Under the docking 
scores of three scoring functions, the ranks of the generated 
compounds were then calculated and the value of the 
exponential consensus ranking (ECR) function [14] for each 
molecule was obtained. The results obtained for the six top-
ranked ligands and two reference compounds are shown in 
Table II. Analysis of the data of Table II shows that these 
ligands exhibit a strong attachment to the binding site of the 
KasA enzyme, as evidenced by the values of binding free 
energy which are lower than those predicted for the control 
inhibitors.  

TABLE II.  SCORING FUNCTIONS VALUES FOR THE SIX TOP-RANKED  

COMPOUNDS 

Ligand 
ΔGVINA, 

kcal/mol 

ΔGRFScore4, 

kcal/mol 

ΔGNNScore2, 

kcal/mol 
ECR 

I -11.2 -11.4 -12.9 0.262 

II -11.6 -11.3 -12.0 0.254 

III -10.8 -11.5 -10.9 0.243 

IV -11.1 -11.4 -10.4 0.234 

V -11.2 -11.1 -13.8 0.233 

VI -10.4 -11.6 -10.4 0.232 

Control inhibitors 

Platensimycin -9.6 -8.13 -9.48  
TLM5 -8.0 -8.27 -6.97  

Physicochemical properties of the identified compounds 
associated with the Lipinski's “rule of five” [15] were 
obtained by the SwissADME web tool 
(http://www.swissadme.ch). These properties met the “rule 
of five”, and predicted synthesizability values indicate a high 
probability of synthetic availability of the selected 
compounds. 

IV. CONCLUSION 

Semi-supervised generative adversarial neural network 
trained on molecular graph embeddings produced by JT-
VAE was developed to generate novel potential inhibitors of 
Mycobacterium tuberculosis protein KasA, one of the key 
enzymes responsible for mycobacterium cell wall 
biosynthesis. The results obtained showed that all 419 
generated molecules are valid and 87% of these compounds 

show the values of binding free energy lower than −8.2 
kcal/mol. Analysis of the six top-ranked compounds showed 
that these molecules form good scaffolds for the 
development of new antitubercular molecules with strong 
activity against Mtb and acceptable pharmacological 
properties.   

The developed generative neural network model can also 
be repurposed for the designing new potential inhibitors of 
other therapeutic targets. 
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