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Abstract—In machine learning and neural networks, non-
linear transformations have been pivotal in capturing intricate
patterns within data. These transformations are traditionally
instantiated via activation functions such as Rectified Linear
Unit (ReLU), Sigmoid, and Hyperbolic Tangent (Tanh). In this
work, we introduce DiagonalizeGNN, an approach that changes
the introduction of non-linearities in Graph Neural Networks
(GNNs). Unlike traditional methods that rely on pointwise
activation functions, DiagonalizeGNN employs Singular Value
Decomposition (SVD) to incorporate global, non-piecewise non-
linearities across an entire graph’s feature matrix. We provide
the formalism of this method and empirical validation on a
synthetic dataset, we demonstrate that our method not only
achieves comparable performance to existing models but also
offers additional benefits such as higher stability and potential for
capturing more complex relationships. This novel approach opens
up new avenues for research and offers significant implications
for the future of non-linear transformations in machine learning.

Index Terms—activation functions, Neural Networks, Nonlin-
earity, SVD

I. INTRODUCTION

In machine learning, particularly in the realm of neural
networks, non-linear transformations play a critical role in cap-
turing complex relationships in data. Traditionally, these non-
linearities are introduced through activation functions like the
Rectified Linear Unit (ReLU), Sigmoid, or Hyperbolic Tangent
(Tanh). These functions operate in a pointwise fashion, altering
the network’s output based on individual elements. However,
such local changes might not capture more global, complex
interactions effectively.

In this paper, we introduce DiagonalizeGNN, a novel frame-
work for Graph Neural Networks (GNNs) that employs a
different paradigm for non-linearity. Our method uses the
Singular Value Decomposition (SVD) to capture global non-
linearities across the entire feature space of the graph nodes.
This SVD-based non-linear transformation is not piecewise,
providing a fundamentally new approach to introduce non-
linearities in neural networks.

The closest relative project we encountered is a work that
focuses on aggregating features to define global activation
functions [FMP21]. However, their method still fundamentally
relies on conventional, piecewise activation functions. Unlike
their approach, our method is truly global and non-piecewise,
using mathematical operations that holistically consider the
entire graph structure and feature matrix. This paper will delve
into the mathematical foundations of our method, providing

proofs to affirm the non-linearity of our operations, and present
experimental results to validate its effectiveness.

One of the unique aspects of our approach stems from
principles loosely inspired by quantum field theory (QFT), a
framework in theoretical physics that describes how fields and
particles interact. In QFT, the equations governing fields are
often linear when considered in isolation. However, interaction
terms added to the equations introduce non-linearities, which
result in a wide range of complex behaviors that simple linear
equations could not capture, [CGP07].

The SVD-based interaction term in our DiagonalizeGNN
method serves a similar role. In its absence, the graph neural
network would be analogous to a system of non-interacting
fields, wherein the mapping from input features to output fea-
tures could potentially remain linear or piecewise non-linear,
depending on the activation functions used. The introduction
of our SVD-based interaction term is akin to the interaction
terms in QFT, breaking the linearity and introducing rich,
global non-linearities into the system.

II. RELEVANCE TO PHYSICAL SCIENCES

The machine learning frameworks commonly used in phys-
ical sciences often require an intricate balance between com-
putational complexity and representational power. Diffusion
models, [HJA20], often employed for understanding molecular
interactions or fluid dynamics, are a prime example of this.
These models usually rely on solving complex partial differ-
ential equations (PDEs) or simulating Markov Chain Monte
Carlo (MCMC) steps, both of which can be computationally
expensive.

Our formalism could serve as an intuitive and robust foun-
dation for developing machine learning methods targeted at
physical systems. Its emphasis on capturing global interactions
could better the way we model complex systems in the
physical sciences [Che+18; Hoo+23; DL23], particularly for
diffusion models of molecular structures and interactions.

A. Conventional Non-linearities

In standard neural networks, the output h is computed as:

h = f(Wx+ b)

where f is an element-wise activation function.
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B. DiagonalizeGNN’s Non-linearities
In DiagonalizeGNN, the output h is computed through

Singular Value Decomposition:

h = SVD(A ·X ·WT −A ·X · V T )

with A an adjacency matrix, X a feature vector for each node
of the graph, and W and V parameters of the neural network.

III. NOVELTY

The novel aspects are:
1) Interaction terms A ·X ·WT −A ·X ·V T that introduce

a new form of non-linearity after SVD.
2) The global context is considered during the diagonaliza-

tion, unlike localized, element-wise activation functions.
3) Non-linearity is introduced not by a function but through

a series of transformations (SVD).

GCN, [KW16]: Xv
new = σ

 ∑
u∈N (v)

Auv ·W ·Xu


DiagonalizeGNN: Zv =

∑
u∈N (v)

Auv ·W ·Xu −Auv · V ·Xu

[U, S, V ] = SVD(Zv)

Xv
new = U · S

IV. INTUITION BEHIND DIAGONALIZE NON-LINEAR
LAYER

The Diagonalize Non-Linear Layer introduces non-linearity
by considering relationships between nodes in a graph. Below
are some key points:

1) Capturing Dependencies: The interaction term Z −
AXV T serves as a form of contrast between two differ-
ent views (W and V ) of the graph. This helps the model
identify and learn subtle differences and relationships
between nodes.

2) Global Context: The Singular Value Decomposition
(SVD) operation projects the interaction term into a
lower-dimensional space where the most significant vari-
ations lie. In doing so, the relationships between differ-
ent nodes are embedded into a space that emphasizes
the most meaningful dependencies.

3) Learnable Parameters: The weight matrices W and V
are learnable parameters. These matrices adapt during
training to capture relevant features and correlations in
the graph data.

4) Non-Linearity through Contrast: The interaction term
itself serves as a non-linear transformation by capturing
how two linear transformations (AWXT and AXV T )
differ. The contrasting nature of this calculation serves
as a form of non-linearity.

5) Dynamic Non-Linearity: Unlike traditional activation
functions like ReLU or Sigmoid, the non-linearity here
is dynamic. It evolves based on the learning of W and
V , allowing the model to adapt its form of non-linearity
to better capture complex and evolving correlations.

V. DIAGONALIZE NON-LINEAR LAYER

Let A be the adjacency matrix of shape [N,N ], and X be
the feature matrix of shape [N,F ].

Initialize weight matrices W,V of shape [H,F ].
1) Standard Operation:

Z = AXWT

2) Interaction Term:

interaction = Z −AXV T

3) Diagonalization:

interaction = UΣV T

4) Feature Update:

newX = UΣ

Non-linearities in DiagonalizeGNN:
1. Interaction Term: The difference Z −A ·X · V T creates

an interaction term.

interaction = Z −A ·X · V T

2. Singular Value Decomposition: Singular value decompo-
sition (SVD) is a form of matrix factorization and introduces
a unique form of non-linearity in the model.

interaction = UΣV T

3. Feature Update: Multiplying U and Σ to get the new
feature newX = UΣ acts as a non-linear transformation of
the original feature space.

VI. NONLINEARITY OF THE SVD-BASED OPERATION

A. Preliminaries

Let A be the adjacency matrix of shape [N,N ], and X be
the feature matrix of shape [N,F ].

Initialize weight matrices W,V of shape [H,F ].
The sequence of operations for any feature matrix X is

defined as:

Z = AXWT ,

interaction = Z −AXV T ,

interaction = UΣV T ,

newX = UΣ.

A function f : RN×F → RN×H is said to be linear if it
satisfies:

• Additivity: f(X1 +X2) = f(X1) + f(X2)
• Homogeneity: f(αX) = αf(X)

VII. NON-LINEARITY OF EIGENVALUES IN SVD

Let A,B be arbitrary matrices. Consider the SVD decom-
positions A = UAΣAV

T
A and B = UBΣBV

T
B .

Now, let C = A + B. Its SVD decomposition is C =
UCΣCV

T
C .
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A. Singular Values and Eigenvalues

The singular values σA and σB are the square roots of the
eigenvalues of ATA and BTB, respectively.

λA = eig(ATA), λB = eig(BTB)

σA =
√

λA, σB =
√

λB

B. Eigenvalues of C

The singular values σC are derived from the eigenvalues of
CTC:

CTC = (A+B)T (A+B) = ATA+BTB +ATB +BTA

λC = eig(CTC), σC =
√

λC

C. Proof of Non-linearity in Eigenvalues

We need to show that σC ̸= σA + σB .
Firstly, λC is an eigenvalue of ATA+BTB+ATB+BTA,

which contains terms that are not simply eigenvalues of ATA
or BTB.

Hence, λC is generally not equal to λA + λB . As a
consequence, σC is also not σA + σB .

VIII. NON-LINEARITY OF ORTHOGONAL MATRICES IN
SVD

To prove that the unitary (or orthogonal in the real case)
matrices obtained from the Singular Value Decomposition
(SVD) operation are non-linear, we first recall the definition
of linearity. A function f(x) is linear if it satisfies:

f(x1 + x2) = f(x1) + f(x2),

f(ax) = af(x).

For SVD, let’s consider square matrices A,B of the same
dimension. Their SVDs are given by:

A = UAΣAV
T
A ,

B = UBΣBV
T
B .

If C = A+B, the SVD of C is C = UCΣCV
T
C .

Proof Points:
1) Uniqueness and Non-additivity: The unitary matrices UC

and VC are uniquely determined by C, but it is not
implied that UC = UA + UB .

2) Orthogonal Constraints: The unitary matrices satisfy
UTU = I , and (UA+UB)

T (UA+UB) is not necessarily
I .

3) Decomposition Equation: The SVD of C in terms of A
and B is

UCΣCV
T
C = UAΣAV

T
A + UBΣBV

T
B .

Due to the complexities introduced by the diagonal and
unitary matrices, UC and VC cannot be simply expressed
as UA + UB or VA + VB .

4) Explicit Counter-example: If Q1 and Q2 are orthogonal,
Q1 +Q2 is generally not orthogonal. To show this, we
check that (Q1 +Q2)

T (Q1 +Q2) ̸= I .
Based on these points, UC and VC resulting from the SVD

operation are not linear functions of UA, UB or VA, VB . Hence,
the unitary matrices are non-linear when derived from the SVD
operation.

IX. NON-LINEARITY IN OPERATIONS AND IMPLICATIONS
FOR NEURAL NETWORKS

A. Breakdown of Operations

1) Standard Operation:

Z = AXWT

This operation is linear with respect to X .
2) Interaction Term:

interaction = Z −AXV T

This is essentially a linear combination of linear terms,
so still linear with respect to X .

3) Diagonalization:

interaction = UΣV T

Here’s where non-linearity comes into play. The sin-
gular value decomposition is inherently non-linear with
respect to the matrix it decomposes. Therefore, the
matrices U,Σ, V are non-linear functions of interaction,
which itself is a function of X .

4) Feature Update:

newX = UΣ

Again, U and Σ are derived in a non-linear manner from
X , making newX also non-linear with respect to X .

B. Implications for Neural Networks

• Contextual Understanding: The SVD operation cap-
tures the essential ’modes’ of variation in the data. In
a neural network, this could serve as a form of “global
context,” helping the model to understand overarching
relationships and dependencies that simpler, local opera-
tions might miss.

• Parameter Efficiency: In a neural network, the matrices
W and V could be learned parameters, allowing the
network to adaptively learn the “best” way to introduce
non-linearity into the system. This could potentially lead
to more expressive yet parameter-efficient models.

• Hierarchical Features: The singular values Σ and the
corresponding U and V could capture different levels of
abstraction in the data, potentially aiding in the hierarchi-
cal representation learning that deep networks are known
for.
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• End-to-End Learning: Importantly, all these parameters
can be learned in an end-to-end fashion, allowing for
better integration of this global context information with
the local features learned by the rest of the network.

• Complexity of SVD: The Singular Value Decomposition
(SVD) of a matrix A ∈ Rm×n typically has a computa-
tional complexity of O(min(m2n,mn2)). In our specific
context, where SVD is applied to the interaction term,
this adds significant computational overhead. This makes
the method less scalable for large-scale problems or real-
time applications, where computational efficiency is a
prime concern. However, it’s worth noting that in the
case of small graphs, the computational complexity may
not present a noticeable difference, making it a feasible
approach for such specific cases.

• Possible SVD simplifications:To mitigate the computa-
tional burden, one possible avenue for future research
could be developing linear approximations of the SVD
operation. While this would potentially lose some of
the fine-grained information captured by SVD, it could
dramatically speed up the computations, making it fea-
sible for applications requiring quick decision-making.
Another promising direction is the investigation of sparse
versions of SVD. Sparsity can be introduced either in
the input matrices or in the matrices resulting from the
decomposition (U , Σ, V ). Sparse versions would reduce
the computational complexity and memory requirements,
albeit at the cost of some loss of information.

X. GRAPH CONVOLUTIONAL NETWORK (GCN)
The Graph Convolutional Network (GCN),[KW16], gen-

erally involves linear transformations followed by non-linear
activation functions.

Mathematical Representation:
1. Linear Transformation:

H(l+1) = A ·H(l) ·W (l)

2. Non-linear Activation:

H(l+1) = σ(A ·H(l) ·W (l))

Here, σ represents the activation function, commonly ReLU,
Sigmoid, or Tanh.

XI. COMPARISON

• Linear Transformations: Both models employ linear
transformations but use them differently. GCNs aggregate
neighbor information, whereas DiagonalizeGNN also
considers interaction terms.

• Non-linearities: GCNs use standard activation functions
like ReLU, Tanh, etc., for introducing non-linearities.
DiagonalizeGNN uses a singular value decomposition
step to introduce non-linearities.

• Activation Functions: GCNs employ activation func-
tions directly on the aggregated feature, while Diagonal-
izeGNN does not use any activation function after the
diagonalization step.

2

XII. IN-DEPTH EXPLANATION

A. GCN

The activation function, such as ReLU, used in GCN
introduces non-linearity by essentially partitioning the feature
space into regions separated by hyperplanes. This enables the
model to learn more complex relations in the data.

B. DiagonalizeGNN

The singular value decomposition (SVD) step is itself a non-
linear operation in terms of how it decomposes the interaction
term. It captures the essence of the original matrix (interaction
term) in a reduced form by approximating the matrix as a
product of U , Σ, and V T . This provides the model with a
capability to capture complex patterns in the adjacency and
feature matrices.

XIII. SYNTHETIC DATASET AND BASELINES

A. Synthetic Dataset

To evaluate the performance and robustness of our proposed
method, we generated a synthetic dataset using Python’s
PyTorch library. The dataset consists of 100 samples, where
each sample represents a graph characterized by an adjacency
matrix A and a node feature matrix X . Each graph has 10
nodes, and each node has 10 features. The labels are randomly
generated and set to either 0 or 1.

The adjacency matrix A is created as follows: for each
graph, a random symmetric matrix with elements in [0, 1] is
generated. The matrix is further thresholded to make it sparse,
with elements less than 0.5 set to zero and those greater than
or equal to 0.5 set to one. The diagonal elements of A are set
to the value of the label to introduce a rudimentary form of
class separation.

The feature matrix X is constructed such that each node
feature is the sum of its connections in A. Each node feature
vector is then replicated to fill the 10 feature dimensions.

B. Baseline Methods

• Graph Convolutional Network (GCN): We use the
standard GCN as a baseline to compare the performance
of our proposed method. This serves as a traditional
approach for learning on graph-structured data.

• SVD-based Method (Our Method): The novel method
proposed in this paper uses Singular Value Decomposi-
tion to introduce a global non-linear function, aiming to
replace the traditional activation functions in graph neural
networks.

XIV. IMPLEMENTATION DETAILS

A. Normalization

Normalization is applied to both the Z matrix (result of
AXWT ) and the interaction term interaction = Z − AXV T .
For each of these matrices, the last dimension is normalized
by its Frobenius norm to avoid numerical instabilities and to
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scale the features to a similar range. Mathematically, this can
be expressed as:

Z =
Z

∥Z∥F + ϵ

interaction =
interaction

∥interaction∥F + ϵ

where ϵ is a small constant to avoid division by zero.

B. Regularization

A regularization term is added to the output features new X
to prevent overfitting. This term is a function of the Frobenius
norm of the weight matrices W and V as well as the norms
of the bias terms b1 and b2. The regularization term reg term
is defined as:

reg term = λ (∥W∥F + ∥V ∥F + ∥b1∥+ ∥b2∥)

Here, λ is a regularization parameter.

C. Bias Terms

Bias terms b1 and b2 are added to Z and interaction,
respectively. These bias terms allow for a shift in the feature
space and provide the model with greater expressive power.
They are initialized to zero and learnable during the training
process. Mathematically, this can be described as:

Z = Z + b1

interaction = interaction + b2

XV. LINEAR VERSION AND BASELINE MODEL

A. Linear Version

The linear version of our proposed model is a simplified
form of the primary model that excludes the SVD-based di-
agonalization, bias terms, normalization, and regularization. It
performs a simple linear transformation on the input features,
defined by a weight matrix W . The forward pass is simplified
to:

Z = AXWT

Unlike the nonlinear version, this simplified model directly
uses Z as the updated node features.

B. Baseline: Graph Convolutional Network (GCN)

The baseline model for comparison is a standard Graph
Convolutional Network (GCN). Each GCN layer consists of a
linear transformation followed by a ReLU activation function.
In mathematical terms, each layer is defined as:

X ′ = ReLU(AXW )

Here, W is the learnable weight matrix for the linear
transformation. The GCN model uses global average pooling
for the output features, similar to our proposed model.

XVI. EXPERIMENTAL RESULTS

A. Convergence Analysis

Figure 1 illustrates the training loss of our proposed SVD-
based model, the standard GCN model, and the simplified
Linear version of our model. Both the SVD-based model
and the GCN model exhibit convergence to nearly the same
accuracy on the training set. However, the Linear version
experiences high variability in loss values between epochs,
ranging from 1 to 500, indicating a lack of stable convergence.

Fig. 1. Training loss comparison of the SVD-based model, GCN model, and
Linear version.

This convergence behavior corroborates the mathematical
understanding that the SVD-based diagonalization introduces
beneficial non-linearities, enabling the model to learn complex
patterns similar to the GCN model. On the other hand, the
Linear model lacks this capacity, making it more volatile and
less effective in capturing the underlying graph structure.

B. Test Dataset Analysis

Figure 2 shows the test loss of our SVD-based model,
the standard GCN model, and the Linear version. The SVD-
based model takes longer to converge compared to the GCN
model but eventually achieves slightly better performance.
Additionally, the SVD-based model’s performance appears to
be more stable, as indicated by the relatively smoother loss
curve. Conversely, the green lines representing the Linear
version demonstrate erratic behavior, emphasizing the model’s
instability and ineffectiveness.

These results suggest that although the SVD-based approach
may be slower to converge, it potentially provides a more
stable and accurate model for graph-based learning tasks. The
stability in test loss indicates the robustness of the model, an
aspect not found in the baseline GCN or the Linear version.

XVII. CONCLUSION

We introduced DiagonalizeGNN, a novel graph neural net-
work architecture that employs singular value decomposition
(SVD) to introduce global non-linearities into the model. This
approach, inspired by quantum field theory, stands in contrast
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Fig. 2. Test loss comparison of the SVD-based model, GCN model, and
Linear version.

to conventional methods that rely on piecewise activation
functions.

Our experimental results establish the DiagonalizeGNN as
a viable alternative to traditional Graph Convolutional Net-
works (GCNs). While the training losses of the two models
are comparable, our SVD-based model demonstrates superior
stability and generalization in the test dataset, albeit at the cost
of slower convergence.

The Linear version of our model serves as a valuable point
of comparison. Its erratic behavior in terms of training and
test loss highlights the necessity of effective non-linearities
for learning complex graph-structured data.

However, one crucial aspect to consider is the scalability of
our proposed model. Singular value decomposition is compu-
tationally expensive, which could be a bottleneck for larger
graphs. To address this, future work could explore the use of
sparse graph structures or approximated linear techniques that
could capture the essence of the non-linear interactions, but
with less computational overhead.

These findings not only validate the efficacy of Diagonal-
izeGNN but also open up new avenues for future research. The
stability and robustness of the SVD-based model suggest its
applicability across a broad range of complex systems, making
it a promising subject for interdisciplinary investigations that
span machine learning and theoretical physics.
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