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Abstract— This paper presents the priority results of 

interdisciplinary SPC RAS research in the areas of cluster 

analysis and object detection in a digital image. For a specific 

domain of video data, the NP-hard problem of estimating 

optimal piecewise constant image approximations, which are 

characterized by possibly minimal approximation errors (total 

squared errors) for each number of 1, 2... etc colors, is posed 

and solved. The novelty of just this paper is in the presentation 

of accelerating the calculation of optimal image 

approximations. 
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I. INTRODUCTION 

Conceptually, we assume that the natural visual system 
of a person or, say, fly sees the surrounding world optimally 
and  is able to calculate the optimal image approximations in 
1, 2, ..., N colors, where N is the number of pixels in the 
image. Then, to simulate visual perception, the computer 
should be endowed with this ability. On the other hand, 
optimal approximations, like pixels, are objective data that 
depend only on the image and do not depend on generation 
algorithms, calculation optimization methods, any training or 
other a priori data about objects. Therefore, in any case, 
optimal approximations are quite useful for efficient 
automatic image processing.  

For grayscale images, 10 years ago in [1] we successfully 
solved the problem of generating optimal approximations 
and continued to solve the problem for color images. 
Unfortunately, over the past time we have not come across 
similar studies. Due to the lack of available benchmark 
samples of optimal color image approximations, we had to 
obtain them ourselves without using computational speed 
optimization, which could affect the results of minimizing 
the approximation error E. At the same time, even for an 
approximate calculation of optimal approximations in a 
reasonable time, it was necessary to develop both a 
meaningful and a computational image model [2-4], because 
otherwise it is practically impossible to solve an NP-hard 
problem. 

Paradoxically, the novelty of the work lies, first of all, in 
the fact that when developing object detection programs, we 
rely on classical methods of cluster analysis [5-8] and 
classical principles of developing an image segmentation 
apparatus [9], which is provided by clustering pixels to 
detect object clusters instead of object instances, similar to 
“semantic” or  “instant” segmentations. 

We found that to successfully calculate optimal image 
approximations, it is necessary to modernize classical 
clustering methods developed before the advent of 

computers, as well as take into account the specifics of Big 
Data that have become available for modern processing. 

II. AN IMAGE AS POLYHIERARCHICAL STRUCTURE  

We use the term structure if the image is numerically 
described by a convex sequence of total squared errors of its 
approximations in 1, 2, ..., N colors. 

The term polyhierarchical reflects the specifics of Big 
Data, which are structured, but are not hierarchical structures 
and therefore are approximated by the latter ambiguously 
(Fig. 1). 

 

Fig. 1. The multi-valued solution of the problem of image hierarchical 

approximation, achievable by Ward’s pixel clustering. The lower gray 

convex curve describes 
gE  sequence of optimal image approximations. 

The upper non-convex black curve describes errors 
gE  of image 

approximations by superpixels constituting some irregular hierarchical 

sequence. The remaining red convex curves describe 
gE  sequences of 

hierarchical image approximations, each containing at least one optimal 

approximation in a corresponding incrementing number of colors.. 

Fig. 1 illustrates the dependence of the approximation 
error on the number of colors in the image. The limiting 
lower curve describes the errors of optimal image 
approximations. It is assumed to be convex, which is verified 
experimentally.  

The upper red curves are convex by construction. They 
intertwine with each other and describe hierarchies of 
approximations corresponding to objects (each hierarchy of 
objects contains at least one optimal approximation, and the 
red curves touch the gray curve at least at one point). The top 
black sinuous curve describes an unstructured hierarchy of 
starting elements of image and objects called superpixels 
[2,3]. 

It can be shown that such approximation of an image by 
numerous object hierarchies exists. All that remains is to 
calculate it. 
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III. A SYSTEM OF THREE METHODS 

The main shortcomings of classical clustering methods in 
computer processing of  Big Data are listed in Table 1. 

TABLE I.  MAIN SHORTCOMINGS OF METHODS FOR 
 E=3N2

 MINIMISATION 

Original Methods Shortcomings 

Ward’s pixel clustering 

• Instability of the E(g) resulting 
values 

• Excessive computational 
complexity 

K-means 

• Unjustifiably rough criterion 
for E minimizing. 

• The calculation of cluster 
centers themselves 

• Reclassification of individual 
pixels rather than their sets 

Split/Merge 

Inefficient implementation of 

reversible computations with an 
arbitrary hierarchy of pixel clusters 

Ward's method is the main one. It is characterized by 
instability of the approximation errors Eg for each number g 
of colors from the target range. It is noteworthy that due to 
multi-iteration calculations, the approximation error Eg 
changes with slight modification of the image, or a change in 
the order of scanning cluster pairs that are enlarged 
differently. It seems that the instability of Ward's method 
when applied to Big Data remains unnoticed so far [7,8]. 
Meanwhile, the established instability turns into a very useful 
property of variability, which allows one to effectively 
minimize the approximation error E over the entire range of 
the color number g with repeated application of Ward's 
clustering, as Monte Carlo method. 

The weakest link is K-means method, and among the 
clustering methods, it is the one that is most intensively used 
in image processing. 

When implementing the simplest split/merge method in 
an adaptive version, organizational difficulties arise, since 
this requires an efficient data structure that supports 
reversible calculations with arbitrary clusters as easily as 
with individual pixels. 

Main disadvantages of conventional data structures 
describing the hierarchy of clusters are as follows: 

• Using dendrograms rather than Sleator-Tarjan 
dynamic trees [10,11]. 

• Inefficient implementation of reversible calculations 
with unlimited rollback and reversible merging of 
pixel sets [12]. 

The working formula of Ward's pixel clustering for the 

minimizing increment mergeE  of approximation error 

E caused by merging clusters a  and b  with pixel numbers 

an , bn  and pixel values aI , bI  averaged within the clusters 

is as follows: 
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where  denotes Euclidean distance between three-

component pixel values. 

Modernization of Ward's  pixel clustering comes down to 
applying this method to pixels subsets for some image 
partition. 

The simplest split/merge method, called CI (Clustering 
Improvement)-method, uses when splitting cluster the above 
formula for the increment of the approximation error E 

caused by merging clusters. But the increment splitE  is 

taken with the opposite sign: mergesplit EE −= , which  

implies the reversibility of the cluster merging operation. It is 
characteristic that CI-method retains the image 
approximations obtained by Ward's pixel clustering.  

The advanced K-means is K-meanless method [13].  
S. D. Dvoenko emphasized in the method name that pixel 
reclassifying should be performed without calculating the 
intermediate cluster centers. This helps to avoid computing 
errors such as empty clusters [14]. 

Working formula for the increment correctE of the 

approximation error E, accompanying the reclassification of 
k pixels with the average Ik value from cluster a into cluster b 
is expressed as follows: 














−

−
−−

+
=

22

ka

a

a
kb

b

b
correct II

kn

n
II

kn

n
kE  

From the last expression, the formula for K-means is 
obtained by eliminating the coefficients that take into 
account the number of pixels in clusters. At one time it was 
convenient for calculations using an arithmometer, but not a 
modern computer. However, when calculating benchmark  
samples of optimal image approximations it turned out to be 
possible to do without K-means method altogether thanks to 
the variability of Ward's pixel clustering. 

As for the data structure for generating, storing and 
transforming hierarchical sequences of image 
approximations, for such calculations Sleator-Tarjan 
dynamic trees seem indispensable, since compared to 
ordinary trees (dendrograms) they have the following 
advantages: 

• Sleator-Tarjan dynamic trees are built on a set of N 
pixel coordinates without creating additional nodes 
and therefore occupy half as much computer   
memory. 

• Trees and other metadata are clustered together with 
structured sets of pixels. At the same time, a network 
of Sleator-Tarjan dynamic trees, cyclic graphs, 
pointer systems, additive characteristics and other 
related data are thrown onto the pixels.  

• Tree-structured metadata supports the structuring of 
images and objects by minimizing approximation 
errors in forward and backward calculations. 

It is important that the three considered modernized 
methods for minimizing the approximation error E form a 
system and, in order to achieve maximum speed without loss 
of clustering quality they are developed for joint use 
according to certain rules. But at the stage of obtaining 
benchmark samples of optimal image approximations, the 
quality of clustering was primary. So, it was achieved by 
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trivially using only Ward’s method, and acceleration was 
ensured through parallel computing. 

IV. EXPERIMENTAL RESULTS 

The following Fig. 2 and Table 2 reveal the contents of 
Fig. 1 from the point of view of a software engineer and also  

 

 

explain the output of the primary structuring of the image 
and objects in the image.      

 

Fig. 2. Dynamic Table of 262144 approximations for “Lena” color image (dimensions 512×512 pixels). The first row and first column of the table were 
cropped. The columns of Dynamic Table, containing the image approximations in 2–7 colors, are shown. Each column contains a binary hierarchical 

sequence of image approximations with incrementally added colors: g = 2, 3, 4, 5, 6 and 7. On the main diagonal of the Dynamic Table are the optimal 

image approximations in g0= 2, 3, 4, 5, 6 and 7 colors. Image approximations at the top are labeled with g color numbers and corresponding standard 

deviation . The optimal image approximation at the top are marked with red color. 
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Fig. 2  shows the fragment of so called Dynamic Table 
that actually illustrates Fig. 1 [2,3]. The calculated 
hierarchies of image approximations are located in columns 
of Dynamic Table. When the row number is increased by 1, 
one of the colors in the current image approximation is split 
up into two ones. The diagonal approximations are just that 
are maximally improved in the error E when applying 
various generation algorithms. 

Parameter g0 is equal to the number of colors in the 
optimal image approximation and is counted along the 
diagonal. In the user’s view, the entire Dynamic Table of 

N×N image approximations is allocated in RAM. In fact, it is 
encoded in RAM by special data structure and the viewed 
approximations are generated on-line as needed. That is why 
the demonstrated table is called a Dynamic Table. 

The user’s task is to choose a column of approximations 
in which the structured objects-of-interest are best displayed. 
According to the user’s choice, the tuning parameter g0 is set 
up, and the objects are approximated either by unions or by 
parts of pixel clusters of the optimal image approximation in 
g0 colors.  

A Dynamic Table contains a sequence of hierarchies of 
image approximations. Given optimal image approxima-
tions, it can be easily generated using Ward’s pixel cluste-
ring method.  

Table 2 explains the same Dynamic Table as Fig. 2, in 
which the image approximations are replaced by their 

standard deviations . 

TABLE II.  DYNAMIC TABLE OF N 
2
 IMAGE APPROXIMATIONS 

1  46,04981 46,04981 46,04981 46,04981 46,04981 46,04981 46,04981 46,04981 46,04981 46,04981 46,04981 46,04981 46,04981 46,04981 

2  27,81697 29,77709 29,93241 28,07157 28,49255 27,95083 28,17859 27,90302 29,65169 27,83996 28,0214 29,41112 28,45686 29,95515 

3  22,10956 21,19506 21,65156 21,88661 22,78413 22,73269 21,80161 22,61297 22,12696 22,29199 22,42447 23,14065 23,36193 21,99656 

4  17,83076 18,02253 17,07501 17,86588 18,40145 17,3913 17,84489 17,73448 17,45965 17,47786 18,27078 18,06902 18,19303 17,43498 

5  16,36359 16,52009 15,62002 15,08308 15,72938 15,22558 16,06497 15,73489 16,06194 16,07563 15,54653 15,80576 15,69404 15,95939 

6  14,91229 14,91664 14,18475 14,15403 13,76419 13,87013 14,53167 14,43118 14,88991 14,56707 14,26015 14,26857 13,98714 14,52036 

7  13,53497 13,72437 13,0825 13,39189 13,05965 12,94162 13,1255 13,1816 13,63081 13,49235 13,36412 13,52597 13,19856 13,37849 

8  12,51078 12,46954 12,45969 12,69997 12,53175 12,38413 12,11697 12,40141 12,55824 12,54075 12,43018 12,85797 12,65099 12,5748 

9  11,75557 11,69727 11,92001 12,2159 11,98996 11,8725 11,40925 11,80964 11,94245 11,92334 11,75422 12,20323 12,093 12,00841 

1
0 

 11,26622 11,15703 11,45123 11,72168 11,56144 11,3584 11,00014 11,23642 11,36592 11,37768 11,15937 11,56803 11,53747 11,48782 

1
1 

 10,85208 10,65161 10,9665 11,2082 11,14244 10,84977 10,68493 10,66212 10,75998 10,81374 10,76813 11,07146 11,0615 11,08202 

1
2 

 10,43215 10,34597 10,57243 10,78406 10,7237 10,46091 10,36246 10,24677 10,28311 10,3209 10,38843 10,5519 10,57204 10,67417 

1
3 

 10,04423 10,07199 10,28153 10,34448 10,29643 10,06842 10,03862 9,94684 9,90688 9,93471 9,99706 10,11099 10,15326 10,25102 

1
4 

 9,70184 9,79683 9,98996 9,94971 9,87209 9,75809 9,72002 9,67179 9,61285 9,60326 9,60928 9,67462 9,72393 9,86624 

1
5 

 9,41357 9,52505 9,69228 9,63151 9,56303 9,45282 9,43502 9,39334 9,33113 9,31958 9,28883 9,34057 9,41909 9,49333 

1
6 

 9,20455 9,273 9,42152 9,30578 9,24672 9,15793 9,15424 9,18172 9,07741 9,09874 9,03991 9,03632 9,10572 9,16265 

1
7 

 8,99841 9,05819 9,15456 9,05354 8,97312 8,86451 8,87031 8,96716 8,89003 8,89583 8,80141 8,79101 8,79755 8,93524 

1
8 

 8,83267 8,84482 8,88235 8,82819 8,69217 8,61745 8,58718 8,76943 8,71926 8,7305 8,58232 8,5934 8,54528 8,73856 

1
9 

 8,67034 8,63201 8,61581 8,63714 8,54538 8,36463 8,3368 8,58661 8,54898 8,5659 8,38287 8,41408 8,38127 8,55508 

2
0 

 8,51405 8,43904 8,36153 8,44724 8,40563 8,17874 8,12188 8,40084 8,37551 8,41027 8,20242 8,24584 8,23829 8,37974 

2
1 

 8,36349 8,25932 8,18764 8,26291 8,27617 8,0119 7,96411 8,23778 8,20258 8,25783 8,05196 8,08257 8,10029 8,2039 

2
2 

 8,221 8,09943 8,0173 8,08737 8,14961 7,86959 7,81877 8,08025 8,03765 8,11387 7,90863 7,93805 7,96019 8,02635 

2
3 

 8,08954 7,94169 7,88748 7,91034 8,02356 7,73866 7,68179 7,94495 7,87533 7,96864 7,7633 7,79897 7,82731 7,86863 

2
4 

 7,96641 7,79921 7,75845 7,75865 7,89673 7,61193 7,56743 7,82181 7,72083 7,83135 7,63047 7,67085 7,70786 7,737 

2
5 

 7,84246 7,66318 7,64224 7,64312 7,77528 7,50645 7,45247 7,69729 7,60714 7,70087 7,51607 7,54784 7,59104 7,60512 

2
6 

 7,71691 7,53469 7,53555 7,52784 7,65352 7,40892 7,36461 7,58215 7,49749 7,58459 7,40014 7,42739 7,47678 7,47117 

2
7 

 7,59836 7,40987 7,43169 7,41952 7,53019 7,31157 7,27725 7,47016 7,39898 7,4856 7,28891 7,3165 7,37262 7,35019 

2
8 

 7,49003 7,31517 7,32764 7,32252 7,41105 7,21744 7,19103 7,36798 7,30591 7,38719 7,17943 7,21739 7,27661 7,23033 

2
9 

 7,38438 7,2211 7,2324 7,22865 7,30895 7,1236 7,11104 7,26464 7,21679 7,30116 7,07599 7,12731 7,18168 7,13545 

3
0 

 7,28007 7,14653 7,1456 7,1365 7,20684 7,04297 7,04123 7,16145 7,12755 7,21744 6,98297 7,04506 7,08717 7,04373 
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TABLE III.  DYNAMIC TABLE OF N 
2
 IMAGE APPROXIMATIONS (CONTINUE) 

3
1 

 7,19302 7,07657 7,05984 7,04814 7,12264 6,96264 6,97388 7,05924 7,03759 7,13582 6,89512 6,96356 6,99429 6,95862 

3
2 

 7,10847 7,00829 6,97479 6,9667 7,04217 6,88142 6,907 6,96795 6,95587 7,06302 6,80898 6,88303 6,91448 6,87691 

3
3 

 7,02365 6,94002 6,899 6,90134 6,96593 6,80094 6,83987 6,88691 6,87833 6,98987 6,72793 6,80168 6,83408 6,79549 

3
4 

 6,94228 6,87325 6,82272 6,83581 6,89022 6,72944 6,77744 6,82589 6,80768 6,92282 6,65503 6,72502 6,75669 6,71472 

3
5 

 6,87053 6,80682 6,74967 6,77108 6,81634 6,65926 6,71533 6,76675 6,73633 6,85707 6,58363 6,64897 6,68479 6,63495 

3
6 

 6,79924 6,74483 6,67829 6,7117 6,74611 6,592 6,65397 6,70871 6,66727 6,79223 6,51382 6,57245 6,61322 6,5554 

3
7 

 6,72965 6,69246 6,60742 6,65547 6,67903 6,52809 6,59205 6,65046 6,603 6,72741 6,44517 6,50568 6,54538 6,47491 

3
8 

 6,6639 6,6402 6,54264 6,60043 6,61544 6,46389 6,53067 6,59215 6,54164 6,67445 6,38166 6,44104 6,48236 6,40458 

3
9 

 6,60081 6,58863 6,47817 6,54679 6,55387 6,40247 6,46949 6,53355 6,48223 6,62331 6,3212 6,37751 6,41924 6,34157 

4
0 

 6,53853 6,53752 6,4184 6,49335 6,4922 6,34147 6,40944 6,47722 6,42314 6,57308 6,26359 6,31478 6,35753 6,27936 

4
1 

 6,48171 6,48753 6,35992 6,44284 6,43315 6,28239 6,34934 6,42501 6,37175 6,52423 6,21179 6,25476 6,29846 6,21878 

4
2 

 6,42442 6,43971 6,30872 6,3948 6,37706 6,22582 6,29054 6,37526 6,32105 6,47631 6,1619 6,20136 6,24052 6,15983 

4
3 

 6,37503 6,39628 6,25913 6,34641 6,32206 6,17314 6,23382 6,32562 6,27073 6,4285 6,11675 6,15384 6,1893 6,10192 

 

The first column of Dynamic Table, as well as other it’s 
repeating columns, is omitted. An additional column has 
been added to the left that shows the number of colors for the 
approximations listed in the corresponding row. The standard 
deviation values of the optimal image approximations are 
highlighted in red. It can be verified that the square minimal 
standard deviations for successive values of the number of 
colors form a convex sequence. In each row they are the 
minimum ones.  

The computer analyzes the standard deviations of 
Dynamic Table Fig. 3, while the software engineer analyzes 
the approximations themselves (Fig. 2) with objects painted 
in different colors to then use automatic coloring as objects-
of- interest attributes. 

Fig. 3 explains the testing of the results of accelerating 
the calculation of optimal approximations, by an order of 
magnitude of 1000 times, applying Ward's clustering method 
to   “Lena” image parts. 
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Fig. 3. Verification of Ward's pixel clustering by image parts. The thick 

black curve describes the control dependence of the standard deviations on 
the number of colors in the image approximations. The white curve 

describes a similar dependence for the hierarchy of image approximations 

obtained by Ward's pixel clustering for N pixels divided into 10 subsets. 

The thick black curve shows the dependence of the 
approximation errors on the number of colors for the control 
optimal approximations of benchmarks, which were obtained 
as a result of lengthy calculations using the original Ward’s 
method with various enlargements of the initial pixels and 
minimizing the  approximation errors Eg for the given range 
of the color numbers g. The white curve shows the 
dependence of the approximation errors Eg on the number g 
of colors for the case of dividing the image into 10 parts, 
which are first processed as independent images, and then 
the resulting hierarchies of approximations are combined into 
a single hierarchical sequence of image approximations.  

It should be noted that Ward's clustering by parts is 
principally  different from the original Ward's clustering, 
since when processing an image by parts, pairs of clusters 
from different parts are ignored. All the more unexpected is 
the practically coincidence of the obtained sequence of 
minimal errors of optimal approximations with the reference 
sequence, as well as the coincidence within the limits of 
visual indistinguishability of the optimal image 
approximations themselves with the same color numbers. 

V. CONCLUSION 

So, in this paper we briefly presented the development of 
SPC RAS on estimating optimal image approximations for 
Computer Vision, in particular, we presented pilot results of 
a high-speed program for Ward's pixel clustering by image 
parts. 

According to [9], the principal requirements for 
segmentation are: 

• The presence of a single algorithm. 

• The presence of a numerical criterion for selecting 
the best of several segmentation options (in our case, 
segmentation via clustering). 

• Scaling invariance.  
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Regarding the first requirement, it should be noted that, 
following G. Koepfler, we implement algorithms not as 
usual, for a obviously limited set of specific images, but for 
the general domain of images as a whole. We believe that the 
desired algorithms are quite simple, because accessible to the 
“intelligence” of a fly. 

We strictly adhere to the second requirement. 

Experimental verification [15] of the third requirement 
shows that it is met. This is not surprising, because Ward's 
method does not take into account the geometric placement 
of pixels and it is invariant under linear transformation of 
pixel numbers. Moreover, we have established a tendency for 
the conversion of an image to grayscale to be commutative 
with its conversion to an optimal approximation in a given 
number of colors (Fig. 4). 

From a practical point of view it seems useful: 

• Modernize classical methods of cluster analysis, as 
well as their implementation in commonly used 
software tools such as Matlab for effective computer 
processing of Big Data (polyhierarchical structures). 

• To study the objective characteristics of digital 
images, supplement with optimal approximations at 
least one of the well-known databases such as 
Berkeley Segmentation Dataset (BSD). 

• Find out which signals, such as audio and other 
signals have a polyhierarchical structure. 

• Adopt the experience of Berkeley University in 
teaching Sleator-Tarjan dynamic trees. 

Optimal color image approximations are available. Let's 
make them commonly used 

 

 

Fig. 4. Stability of segmentation through optimal clustering when converting a color image to a grayscale representation (top pair of approximation rows) 

and invariance to scaling (bottom pair of approximation rows). 

ACKNOWLEDGMENT 

This research was funded within the framework of the 
bud-getary theme FFZF-2022-0006 (Theoretical and 
Technolo-gical Basis for Operational Processing of Big 
Heterogeneous Data Streams in Sociocyberphysical 
Systems). 

REFERENCES 

[1] M. V. Kharinov “Image segmentation method by merging and 
correction of sets of pixels. Pat. Recog. Image Anal. Adv. 
Math.Theory Appl. 2013, 23, 393–401. 

[2] I. G. Khanykov, V. А. Nenashev, M. V. Kharinov “Algebraic Multi-
Layer Network: Key Concepts. ” J. Imaging 2023. 9, 146  

[3] V. A. Nenashev, I. G. Khanykov, M. V. Kharinov “A Model of Pixel 
and Superpixel Clustering for Object Detection.” J. Imaging 2022, 8, 
274. 

[4] V. А. Nenashev, I. G. Khanykov “Formation of fused images of the 
land surface from radar and optical images in spatially distributed on-
board operational monitoring systems. ”  
J. Imaging, 2021  7(21).  

[5] S. A. Aivazian, V. M. Bukhshtaber, I. S. Eniukov, L. D. Meshalkin, 
“Prikladnaia statistika: klassifikatsiia i snizhenie razmernosti [Applied 
statistics: classification and dimension reduction].” Finance and 
Statistics Publisher: Moscow, Russia, 1989.  p. 607. 

g 



311 

[6] I. D. Mandel “Klasternyi analiz [Cluster analysis].” Finance and 
Statistics Publisher: Moscow, Russia, 1988.  p. 176.  

[7] F. Murtagh, P. Legendre “Ward’s hierarchical clustering method: 
clustering criterion and agglomerative algorithm.” arXiv 2011, 
arXiv:1111.6285. 

[8] A. Fernández, S. Gómez “Versatile linkage: a family of space-
conserving strategies for agglomerative hierarchical clustering. ”  J. 
Classif. 2019, 37, 584–597.  

[9] G. Koepfler “Segmentation by minimizing functionals and the 
merging methods,” in World Congress of Nonlinear Analysts’92, 
Proc. of the First World Congress of Nonlinear Analysts, Tampa, FL, 
USA, 19–26 August 1992; Lakshmikantham, V., Ed.; DeGruyter: 
Berlin, Germany; Boston, MA, USA, 1996; pp. 1933–1942. 

[10] D. D. Sleator,  R. E. Tarjan “Self–Adjusting Binary Search Trees.”  
Journal of the ACM, 1985. 32(3), 652–686. 

[11] R. Nock,  F. Nielsen “Statistical Region Merging.” IEEE Trans. 
Pattern Anal. Mach. Intell. 2004.  26(11), 1452–1458.  

[12] T. Toffoli “Reversible computing,” in International Colloquium on 
Automata, Languages, and Programming; Springer: 
Berlin/Heidelberg, Germany, 1980;  632–644. 

[13] S. D. Dvoenko “Meanless k-means as k-meanless clustering with the 
bi-partial approach,” in 12th International Conference on Pattern 
Recognition and Image Processing (PRIP’2014), UIIP NASB, Minsk, 
Belarus, 24–27 September 2014; pp. 50–54. 

[14] D. Aloise, N. C.Damasceno, N. Mladenoviĉ,; D. N. Pinheiro “On 
strategies to fix degenerate k-means solutions.” J. Classif. 2017, 34, 
165–190. 

[15] M. V. Kharinov “Polyhierarchical image structure and invariant 
object detection,” in  Graphicon-Conference on Computer Graphics 
and Vision, Moscow, 2023 (in press) 

 


