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Abstract—This study explores speech emotion recognition 

(SER) using mel-frequency cepstral coefficients (MFCCs) and 

Support Vector Machines (SVMs) classifier on the RAVDESS 

dataset. We proposed a model which uses 80-component 

suprasegmental MFCC feature vector as an input downstream by 

SVM classifier. To evaluate the quality of the model, unweighted 

average recall (UAR) was used. We evaluate different kernel 

functions for SVM (such as linear, polynomial and radial 

basis)and different frame size for MFCC extraction (from 20 to 

170 ms). Experimental results demonstrate promising 

accuracy(UAR = 48%), showcasing the potential of this approach 

for applications like voice assistants, virtual agents, and mental 

health diagnostics. 
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I. INTRODUCTION  

The field of computer speech emotions recognition (SER) 
began to develop rapidly in the last decades due to the growth 
in the performance of computational resources and the wide 
interest of researchers in the field of neurology, psychology, 
psychiatry and computer science [1], [2]. Emotions often 
influence decision-making processes, so emotion recognition 
may be of interest in order to build more effective 
communication, including dialogue systems (voice assistants, 
chat bots). 

The problem of emotion recognition is currently a relevant 
and applied task of artificial intelligence. Its solution 
allows,for example, in the field of communication to build an 
effective relationship between a computer and a human, in the 
field of medicine(interfaces based on speech technologies for 
disabled, blind or visually impaired users), in decision-making 
tasks(recognition of negative emotions such as stress, 
anger,fatigue is an important aspect in terms of ensuring road 
safety with the use of intelligent vehicles, as it allows them to 
respond to the emotional state of the driver) etc. 

In this paper, we consider an approach to solving the 
problem based on the processing of speech signals. At the 
same time, one of the main problems of this approach is related 
to the definition of a set of features that effectively describe 
this type of emotion [1], [3]–[5]. And thus, the construction of 
a feature space in which objects corresponding to different 
classes of emotions can be separated. 

In order to solve such a non-trivial problems two main 
techniques were: mel-frequency cepstral coefficients (MFCC) 
extraction as the basis for feature engineering pipeline and 
support vector machines (SVM) as a classification algorithm. 

MFCC are a widely adopted and effective feature 
extractiontechnique for speech emotion recognition [1], [4]. 
MFCC replicate the human auditory system’s response to 

sound,capturing relevant acoustic information [6]. By 
converting the audio signal into a frequency domain 
representation, MFCC highlight the essential characteristics of 
speech, such as spectral shape and pitch. This technique 
reduces the dimensionality of the data while retaining critical 
features, making it suitable for machine learning algorithms 
like SVM. Moreover, MFCCs are robust to noise and 
variations in speaking styles, ensuring that subtle emotional 
nuances in speech are preserved. As a result, MFCC serve as 
a valuable tool in speech emotion recognition, enabling 
models to discern emotional states accurately and reliably 
from audio signals. 

At the same time, SVM offer a promising approach for 
speech emotion recognition, combining robust classification 
capabilities with adaptability to high-dimensional feature 
spaces. SVM are based on the principle of finding the optimal 
hyperplane that maximally separates different classes in 
feature space [7]. In the context of speech emotion 
recognition,this means SVM can effectively distinguish 
between various emotional states [4].Additionally, SVM can 
handle non-linear relationships through kernel functions, 
allowing them to capture intricate patterns in speech data. 
Their ability to generalize well and mitigate overfitting makes 
SVM suitable for the often noisy and nuanced nature of 
emotional speech. 

II. FEATURE EXTRACTION 

The first stage of the SER system is the preprocessing of 
the input speech data [1], [4]. 

An analysis of the available approaches for feature 
categorization showed that the technique based on the 
calculation of MFCCs [6] is the most suitable for the purposes 
of the study. These indicators are widely used in the 
recognition of emotions in speech and are extremely effective 
tools for building various machine learning models [5], [8]. 

A. MFCC calculation 

In this section, we consider the MFCC calculation. The 
steps of MFCC calculation is given in Fig. 1. 

 
Fig. 1. Scheme for calculating mel-frequency cepstral coefficients 
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The process of MFCC extracting includes the following 
steps: 

a)  Short-time Fourier transform (STFT): This is a 

special kind of Fourier transform that is used to see how the 

amplitudes of the frequency components of a signal change 

over time. It works by splitting the signal into short-time 

segments and applying discrete Fourier transform (DFT) to 

each one. STFT is widely used for the analysis, modification 

and synthesis of audio signals [9]. The STFT can be viewed 

as a sliding window transform that has the form: 

𝑋(𝑘, 𝑙) = ∑ ℎ𝑁−1
𝑛=0 (𝑛)𝑥(𝑛 + 𝑙𝐿)𝑒−𝑗𝜔𝑘𝑛   

where x(t) is the input signal, N is a frame size, h(n) is the 
window function and ωk = 2πk/M , k = 0, 1, ...M − 1 is the 
frequency index, L is the time step between adjacent 
frames(hop size), and l is the index of analysis frame. It is easy 
to see that (1) is the calculation of the DFT for the signal 
h(n)x(n + lL). Thus, the representation resulting from the 
STFT is a sequence of time-localized spectra. Fig. 2 shows an 
example of a speech signal from the RAVDESS database and 
Fig. 3 shows the spectrogram (output of the STFT). 

Fig. 2. Representation of the speech signal expressing anger 

b)  Mel-filter set calculation: used to model the 

properties of human hearing during the feature extraction 

phase. Therefore, we will use the mel scale to compare the 

actual frequency with the frequency that people perceive. 

Mel filter bank is a set of triangular filters that have 
uniform spaced in the mel-frequency scale. These filters are 
used to convert the power spectrum into the mel-frequency 
domain. 

Fig. 3. Spectrogram of a speech signal expressing anger 

Mel filter bank is applied to STFT output 𝑋(𝑘, 𝑙)2 ∨ to 
obtain mel-scale spectrogram. 

Note that human hearing is less sensitive to changes in the 
energy of an audio signal at higher energy than at lower 
energy. The logarithmic function also has a similar property, 
with a low value of the input, the gradient of the logarithmic 
function will be higher, but with a high value of the input 
gradient, the value will be smaller. So we apply log to the mel 
filter bank output to simulate human hearing. 

c)  Discrete Cosine Transform (DCT): The problem 

with the resulting melspectrogramm coefficients are highly 

correlated. DCT is used to decorrelate these coefficients. As 

a result, we get a set of numbers that are mel-frequency 

cepstral coefficients. Fig. 4 shows time-sequence of MFCC 

calculated for signal given in Fig. 2. 

Fig. 4. Time-sequence of MFCC 

In this work the speech signals with 48 kHz sampling 
rateare used. STFT is calculated using the following set of 
framesizes N = {1024, 2048, 4096, 8192}. The hop size L is 
set to N/2. From each N -sample frame we extract 40 MFCCs 
usingthe Librosa library in Python. After processing of one 
audio file we get MFCCs matrix M of size 40 × Nframes , where 
Nframes is a number of time frames. To get uniform feature 
vector for each audio file we calculate mean and std values for 
MFCCs in matrix M along time axis, thus for each audio file 
we obtain 80-component vector of suprasegmental MFCC 
features. 

III. AUDIO DATASET 

In this study the Ryerson Audio-Visual Database of 
Emotional Speech and Song (RAVDESS) [10] dataset was 
used. We used only a part of the RAVDESS dataset, namely, 
RAVDESS Emotional speech audio. This part of RAVDESS 
contains 1440 wav files (16bit, 48kHz): 60 entries for each of 
24 professional actors (12 males, 12 females). Phrases with a 
neutral North American accent. Speech emotions include 
expressions of neutrality, calmness, happiness, sadness, anger, 
fear, surprise, and disgust. All emotional states, except for the 
neutral one, were voiced at two levels of emotional loudness 
(normal and increased). The actors repeated each vocalization 
twice. 

IV. SVM CLASSIFIER 

The SVM was used to solve the problem of recognizing 
emotions in speech. Classification using SVM is achieved by 
constructing a linear (or non-linear) separating surface in the 
feature space [7]. The idea of this approach is to transform 
(using the kernel function) the original features into a higher 
dimensional space. And already in the new transformed 
feature space to achieve an optimal classification in a certain 
sense. 

Any symmetric, positive (semi-)definite function K can be 
considered as a kernel. This function computes ”scalar 
product” of the feature vectors xi and xj transformed to the 
higher dimensional space using function ϕ: 

𝐾(𝑥𝑖 , 𝑥𝑗) = ⟨𝜙(𝑥𝑖), 𝜙(𝑥𝑗)⟩ 

K(xi, xj) characterizes the measure of similarity between xi 
and xj . In our research we used the following kernel functions: 

• linear kernel: 

𝐾(𝑥𝑖 , 𝑥𝑗) = ⟨𝑥𝑖
𝑇𝑥𝑗⟩ 
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which corresponds to the classifier on the support vectors 
in the original space. 

• Polynomial kernel with degree p: 

𝐾(𝑥𝑖 , 𝑥𝑗) = (1 + 𝛾𝑥𝑖
𝑇𝑥𝑗)

𝑝
 

• Gaussian kernel with radial basis function (RBF): 

𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝 (𝛾‖𝑥𝑖 − 𝑥𝑗‖
2
) 

The parameter γ is hyperparameter that is chosen using 
grid search procedure. The SVM also has hyperparameter C 
that controls the the ”budget” of violating the margin 
boundary. Hyperparameter C also selected using greed search 
procedure. 

V. EVALUATION DESIGN 

For testing the model performance, the k-fold cross- 
validation (CV) method was used [7]. The k-fold CV includes 
the following steps: 

1) shuffle the dataset in a random way; 

2) divide the dataset into k groups; 

3) for each unique group do the steps: 

a) select a group as test set; 

b) take the remaining groups as training set; 

c) train the model on training set and evaluate its 

performance on test set; 

d) save score value and reset model to initial state for 

next iteration; 

4) calculate the average score. 
 

In this paper, the data was split into five folds as follows 
(in parentheses are the indices of the actors): 

• fold 0: {2, 5, 14, 15, 16}; 

• fold 1: {3, 6, 7, 13, 18}; 

• fold 2: {10, 11, 12, 19, 20}; 

• fold 3: {8, 17, 21, 23, 24}; 

• fold 4: {1, 4, 9, 22}; 

This splitting pattern proposed and explained in [2]. 

To evaluate the quality of the model, unweighted average 
recall (UAR) was calculated. UAR is a metric used to measure 
the overall performance of a multi-class classification model. 
It calculates the average recall across all classes, giving equal 
importance to each class without considering the class imbal- 
ance. The formula for Unweighted Average Recall (UAR) is 
given by: 

𝑈𝐴𝑅 =
1

𝑁𝑐
∑

𝐴𝑖𝑖

∑ 𝐴𝑖𝑗
𝑁𝑐
𝑗=1

𝑁𝑐

𝑖=1

 

where A – confusion matrix, Nc – number of classes. The UAR 
value is in the range from 0 to 1. 

The experiment was carried out in three stages: 

1) training sample preparation; 

2) training and testing of the classifier using a different 
kernel function and different speech analysis parameters; 

3) model evaluation using UAR metric. 

VI. RESULTS AND DISCUSSION 

The experiments conducted on the RAVDESS dataset 
using SVM classifiers with various kernels and 
hyperparameters, including RBF, linear, and polynomial 
kernels, along with different frame lengths for MFCC 
extraction, yielded valu- able insights into emotion 
recognition. We used grid search technique in order to tune the 
and find best hyperparameters for a given kernel. 

The table I gives a short summary of all the conducted 
experiments. 

TABLE I. THE RESULTING UAR FOR SVM CLASSIFIER WITH DIFFERENT 

KERNELS 

Frame size Linear Kernel 
Polynomial 

Kernel 
RBF Kernel 

1024 0.435 (C =1.25) 
0.434 (C = 0.01, 

γ= 10, deg= 1) 

0.462 (C = 4.33, 

γ= 7e-3) 

2048 0.443 (C =1.05) 
0.442 (C = 0.01, 

γ= 10, deg= 1) 

0.464 (C = 8.22, 

γ= 15e-4) 

4096 0.445 (C =1.05) 
0.437 (C = 0.01, 

γ= 10, deg= 1) 

0.480 (C = 15.2, 

γ= 4e-3 

8192 0.447 (C =1.05) 
0.439 (C = 0.01, 

γ= 10, deg= 1) 

0.469 (C = 15.2, 

γ= 4e-3) 

 The best UAR value 48% is reached using SVM with RBF 
kernel and suprasegmental MFCC features calculated based 
on frames with size 4096 samples. UAR surface calculated 
during the grid search for this model is given in Fig. 5. It can 
be seen that higher value of C parameters results in more 
flexible classifier with higher performance. 

 

Fig. 5. UAR surface 

In Fig. 6 a multiclass confusion matrix is presented for the 
best SVM-RBF model. The confusion matrix analysis of the 
RAVDESS dataset using an SVM classifier reveals insightful 
patterns in emotion recognition. Among the emotions, it was 
observed that the most frequently misclassified emotion was 
Neutrality (27%). Interestingly, this emotion appeared to be 
frequently confused with Sadness, suggesting some 
similarities in their acoustic characteristics. Conversely, 
Surprise demonstrated a high recognition accuracy (61%) and 
was seldom misclassified as another emotion, indicating 
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distinctive features in its acoustic profile. These findings shed 
light on the challenges faced by the classifier in distinguishing 
subtle emotional nuances and underscore the importance of 
feature engineering and model refinement in improving 
emotion recognition performance. 

 

Fig. 6. Multiclass confusion matrix 

Our findings demonstrate that the choice of kernel has 
asignificant impact on classification accuracy. The RBF 
kernel exhibited robust performance across multiple emotions, 
while the linear kernel excelled in distinguishing certain 
emotionalstates. Notably, the frame size used for MFCCs 
extractionplayed a significant role in the overall accuracy of 
the system,with shorter frames providing finer temporal 
details and longerframes capturing broader contextual 
information. These results emphasize the importance of fine-
tuning the SVM classifier’s kernel and considering the trade-
offs associated with frame size when designing emotion 
recognition systems. 

VII. CONCLUSION 

In the realm of human-computer interaction, the accurate 
recognition of emotions from speech is a pivotal factor. This 
work presented an approach to speech emotion recognition 
problem based on SVM classifier and MFCC surpasegmental 
features. The best results (UAR = 48%) is obtained using 
SVM-RBF with MFCC features calculated based on 85 ms 
frames. Comparing to the other works [2]–[4] there is a room 
for improvement. 
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