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Abstract—The automatic detection of urine sediment 

particle (USP) in microscopy images plays a vital role in 

evaluating renal and urinary tract diseases. Convolutional 

neural networks (CNN)-based object detectors have 

demonstrated remarkable precision in end-to-end detection. 

However, directly applying CNN-based detectors to high-

resolution USP microscopic images poses two major challenges: 

classification confusion and underutilization of fine-grained 

information. To address these problems, we present a novel 

High-Resolution Global Context (HRGC)-YOLO model, which 

based on YOLOv5m structure and incorporates a global context 

(GC) block to capture long-range dependencies. Meanwhile, we 

employ a tile-based detection approach to leverage the 

uncompressed fine-grained information in high-resolution 

images. We evaluated the performance of HRGC-YOLO on 

high-resolution USP datasets from clinic. Compared to 

YOLOv5m, our HRGC-YOLO network achieved a 4.5% 

improvement in mAP and outperformed all tested YOLO series 

models. Our results demonstrate the effectiveness of the 

proposed method in accurately detecting USPs in high-

resolution images. 

Keywords—Deep learning, Object detection, Urine sediment, 

Global context, Tile-based image processing 

I. INTRODUCTION 

The microscopy imaging and image analysis of visible 
urine sediment components play a pivotal role in diagnosis of 
renal and urinary tract diseases [1]. With the increasing 
demand from the clinic, the need for automated and efficient 
detection of particle instances from microscopic images has 
become urgent. Vast quantities of microscopic images are 
generated in hospitals on a daily basis, necessitating advanced 
methods to accurately identify and categorize urine sediment 
particles (USPs). 

Computer vision assisted USP detection has transitioned 
from multistage methodologies to end-to-end approaches. 
Prior to the widespread adoption of Convolutional Neural 
Networks (CNNs) for object detection, the detection processes 
for USPs constitute discrete steps, such as the region of 
interests proposal [2, 3], feature extraction [4], and 
classification [5]. More recently, CNN-based object detection 
has witnessed rapid development, enabling swift and accurate 

detection outcomes. For example, Liang et al. [6] proposed 
improvements to the Faster Region CNN (R-CNN) [7] 
framework to make accurate detection results in USP images. 
Additionally, Derya et al. [8] merged Faster R-CNN with 
super-resolution reconstruction methods and image denoising 
techniques to accurately recognize USPs in low-resolution 
medical images. Besides the two-stage object detection 
models exemplified by Faster R-CNN, one-stage object 
detection models such as the You Only Look Once (YOLO) 
series [9–11] have also been extensively utilized in USP 
detection [12–15]. The YOLO networks have efficient 
network architecture that eliminates the need of a region 
proposal network and converts object detection into a single 
regression problem.  

Current methods for detecting USP images face two major 
challenges. Firstly, USPs exhibit intra-class variation and 
inter-class similarity [16], leading to classification confusion 
[6]. Secondly, fine-grained information in high-resolution 
(HR) USP images is inevitably underutilized. This is due to 
the constraints of computational complexity that requires  
compression before feeding the HR images into network. 
Previous researches have shown that attention modules are 
capable to ensure networks to focus only on the pertinent 
information [17]. It is an effective strategy to enhance the 
performance of network. However, conventional approaches 
mainly paid attention to the prospect of attentional modules in 
extracting local information or combining channel 
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Fig. 1. Illustration of the classes and distribution of USPs labeled in high 
resolution images. This study specifically examined eight distinct types of 

USPs, namely: erythrocyte (eryth), crenated erythrocyte (cren), leukocyte 

(leuko), epithelial cells (epith), bacteria (bact), fungi, crystals (cryst) and 
casts. 
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relationship (later in this article we will refer to them as local 
attention modules for convenience). Neglecting the 
importance of long-range dependencies will cause the 
detection performance degeneration. Moreover, existing 
approaches primarily rely on public datasets consisting of only 
low-resolution USP images in JPEG format, lacking 
evaluation on uncompressed images directly captured from 
HR cameras. 

To address these two issues, we propose a novel High-
Resolution Global Context (HRGC)-YOLO model. We 
integrated the long-range dependency capturing module, GC 
block [18], into the original YOLOv5m architecture. 
Additionally, we introduced a tile-based image processing 
approach to effectively exploit the fine-grained information in 
HR images. To evaluate its performance, we built a 
comprehensive dataset comprising 1,278 HR, high-fidelity 
images with eight classes of USPs (Fig. 1). The proposed 
method achieved a 4.5% improvement than YOLOv5m in 
mean Average Precision (mAP), and significantly surpassed 
other tested YOLO series models. 

II. HRGC-YOLO NETWORK 

The HRGC-YOLO model is a modified version of the 

YOLOv5m model. It is specifically designed to 

accommodate the unique characteristics of HR USP images. 

By incorporating the GC blocks in the neck network, the 

HRGC-YOLO is capable of capturing the global 

dependencies of the images. To retain fine-grained 

information, we employed a tile-based approach for data 

processing. In this section, we will provide a description of 

the classic YOLOv5 model and detailed information of the 

two integrated approaches in our developed model. 

A. YOLOv5 architechture 

The architecture of YOLOv5 is shown in Fig. 2 and can be 
divided into three parts: backbone, neck, and detection head. 
The backbone is a deep CNN and serves as the feature 
extractor. It plays an important role in capturing hierarchical 
features of different scales. The neck is responsible for 

combining features from different depths of the backbone 
network. In YOLOv5, the neck utilizes pyramidal feature 
hierarchies to aggregate features with various resolutions and 
to enhance capability of the model to detect objects at different 
scales. The detection head is responsible for predicting 
bounding boxes and class probabilities. 

B. Global context block 

As mentioned earlier, the attention modules have been 
proven its effectiveness in alleviating classification confusion 
caused by intra-class variation and inter-class similarity. 
However, the local attention modules in recently proposed 
USP detectors, such as the Convolutional Block Attention 
Module (CBAM) [19], predominantly focus on local spatial 
information and overlook the significance of long-range 
dependencies. We observed that by incorporating non-local 
attention-like modules into the network, it will improve the 
detection accuracy more effectively. This is because the non-
local module has the ability to integrate and analyze regions 
of interest across the entire image. Therefore, it enables the 
model to compare confusing objects with other similar objects 
in the image, resulting in more reliable and reasonable results.  

In the HRGC-YOLO, we introduced a global context (GC) 
block [18] (Fig. 2), which can be defined as a combination of 
simplified non-local block and squeeze-excitation (SE) block 
[20]. The mathematic mechanism of GC block is illustrated as 
follows: 

𝑧𝑖 = 𝑥𝑖 ×𝑊𝑣2𝑅𝑒𝐿𝑈(𝐿𝑁(𝑊𝑣1∑
𝑒𝑥𝑝 (𝑊𝑘𝑥𝑗)

∑ 𝑒𝑥𝑝⁡(𝑊𝑘𝑥𝑚𝑚 )
𝑥𝑗

𝑁𝑝

𝑗=1

)) (1)
 

where 
exp(𝑊𝑘𝑥𝑗

)

∑ exp(𝑊𝑘𝑥𝑚𝑚 )
 represents the weight of global attention 

pooling, which corresponds to the softmax function in Fig. 2. 
𝑧𝑖  and 𝑥𝑖  are the output and input of the GC block, 
respectively. 𝑅𝑒𝐿𝑈 stands for Rectified Linear Unit, and 𝐿𝑁 
stands for Layer Normalization. 𝑊 denotes a 1×1 convolution, 
and the scaling factor r of 𝑊𝑣1 is empirically set to 8 in this 

 

Fig. 2. Schematic of the tile-based approach (left) and the HRGC-YOLO model structure (right). The input image will be cropped into several square patches, 

and fed into network along with the compressed original image. The network was modified from YOLOv5m. We added a GC block in the neck network to 
help capture long-range dependencies. 
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work. 𝑁𝑝  represents the number of positions in the feature 

map. 

Since GC block is a relatively lightweight and powerful 
module, we applied this module solely at the front end of the 
neck network in our HRGC-YOLO model. As a result, the 
computational requirements of HRGC-YOLO only have 
increased from around 47.95 GFLOPs (Giga Floating Point of 
Operations) to about 48.07 GFLOPs, corresponding to a 
slightly increase of 0.25%. Moreover, the introduction of this 
module results in merely 0.65% increase in the number of 
model parameters (refer to Table II for more information). 

C. Tile-based image process 

One challenge in training the HRGC-YOLO model is to 
design a procedure to handle the HR images. Directly input 
HR images into a CNN would cause memory overflow, as 
well as slow down the training process. Since inputs with high 
resolution will significantly increase the time requirement of 
some complex data augmentation procedures. Meanwhile, 
simple and rough images rescaling may lose the essential fine-
grained information. 

Therefore, we adopt a tile-based image processing 
approach (Fig. 2). It allows the model to perceive both the 
entire image and local information. In addition, it can 
minimize the computational resource and preserve the fine-
gained information at the same time. As illustrated in Fig. 2, 
we crop the original image with size (h, w) into several square 
patches, each with a width of r. During the training procedure, 
these patches, along with the compressed original image, are 
fed into the network. During the inference phase, the detection 
algorithm summarizes the prediction boxes of the patches and 
the original image, followed by uniform non-maximum 
suppression to obtain the final detection result. In this way, our 
HRGC-YOLO is able to practically use the fine-grained 
details and maintaining a high computational efficiency. 

III. EXPERIMENTS AND RESULTS 

In this section, we present a series of experiments 
conducted on manually built dataset to evaluate the 
performance of the proposed HRGC-YOLO model. Firstly, to 
show the performance of the non-local attention module, we 
compared the GC block with several other attention modules. 
Furthermore, we introduced the tile-based method and 
conducted a comparative analysis with other YOLO models 
to demonstrate the performance of HRGC-YOLO in HR USP 
image detection tasks. 

A. Dataset preparation 

The current public USP dataset contains only low-
resolution JPEG format data, which may lose a lot of detailed 
information about the objects. Besides, previous work [21] 
mentioned that although CNNs are resilient to low level JPEG 
compression, but a high compression rate can still lead to a 
sudden decrease in their performance. 

To conduct an evaluation of the HRGC-YOLO model, we 
manually built a dataset consisting of 1,278 HR USP images. 
These images were captured using a Leica DM500 
microscope equipped with a Leica ICC50 camera at a 
magnification of 400. The majority of the images have 
dimensions of 5,440×3,648 and 4,000×3,000 in pixels1 and 

 
 

were saved in TIFF format. Our dataset consists of 8 classes 
of particles, with a total of 32,968 particles manually labelled 
by clinical experts. Table I provides a summary of the dataset, 
illustrating the number of instances in each category. We 
divided the dataset into two sets: 903 images for training and 
375 images for testing.  

TABLE I. THE NUMBER, SIZE AND TEST SET PERCENTAGE OF EACH 

CLASS IN SELF-BUILT DATASET 

categories number size 
test 

percentage 

eryth 12931 30.1 32.0% 

cren 1505 27.7 21.1% 

leuko 5242 44.2 28.2% 

epith 1087 179.1 32.0% 

bact 5767 18.1 24.7% 

mold 1669 36.6 34.2% 

cryst 3363 40.1 28.9% 

casts 800 341.2 31.0% 

B. Experimental Settings 

The HRGC-YOLO model was developed on the YOLOv5 
open-source project with the help of PyTorch framework. 
Adam optimizer was used to optimize the parameters of all the 
models tested, and they were trained on a RTX 3090 GPU. We 
set the maximum number of training epochs to 300, and the 
size of the minibatch used for each experiment was 
determined by the maximum size the GPU can handle. The 
remaining hyperparameter were set to the default values of the 
official YOLOv5 project. During the training phase, the input 
images were scaled isometrically to a width of 1,280 pixels 
while maintaining the original aspect ratio. To ensure shape 
uniformity within each minibatch, gray padding was applied 
to the resized images. 

For evaluation metrics, we adopt the mAP at intersection 
over union (IoU) threshold 0.5 (mAP50), consistent with 
previous studies in the field. The mAP50 and the Average 
Precision (AP) values for each specific type of USP in Table 
II and III present the optimal results obtained from three 
separate experiments, except for the results obtained from the 
tile-based method owing to the training time limitation. Fig. 3 
visualizes the comparison of the detection results of our 
proposed method with the base model. 

C. The importance of GC block  

Next, we investigated the effectiveness of GC block, and 

compared it with four classic local attention modules (CBAM 

[19], BAM [22], SE [20], and EffectiveSE (ESE) [23]). All 

these five modules were plugged separately into the front end 

of the neck network of the YOLOv5m. For convenience, we 

named the YOLOv5m model that incorporates GC blocks as 

GC-YOLO. To be clear, the dataset used in this step was our 

original HR images without preprocessing with our tile-based 

image method. The detailed detection results were presented 

in Table II. In summary, the utilization of attention blocks 

consistently enhanced the detection accuracy of the model. 

Compared to other modules, the GC block demonstrated 

superior performance (+1.6% mAP50 to the base YOLOv5m 

model), especially the AP value of small target bacteria (bact) 

gained the most significant improvement (+9.1%). 

1 To clearly present the morphology and number of USPs, the images 

in Fig. 1 and Fig. 3 only show 1/4 from the original ones. 
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These results highlighted the advantage of the GC block 

in capturing global contextual information, particularly in the 

detection of large-size USP images. Moreover, the GC block 

introduced only a marginal number of additional parameters 

and GFLOPs, ensuring that the computational burden 

remains manageable in practical applications. 

D. The outstanding detection performance of HRGC-YOLO 

In this section we compared the detection performance of 
HRGC-YOLO with other detectors that commonly used in 
natural images. Here we chose three recently released updated 
YOLO models. The results of YOLO series are shown in 
Table III. 

To further improve the detection accuracy of HRGC-
YOLO, we additionally used the Focal-GIoU bounding box 
regression loss and SimOTA label assignment strategy during 
the training procedure. Compared to ordinary losses, GIoU 
loss [24] can provide greater robustness in processing changes 
in scale, rotation, and tilt of visible components in microscopic 
images. In addition, GIoU loss is also more effective in 
penalizing the occurrence of overlapping target boxes, 
particularly in situations involving dense targets. The GIoU 
loss can be represented as: 

𝐿𝑜𝑠𝑠𝐺𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈 +
|𝐴𝑐 − 𝑈|

|𝐴𝑐|
(2) 

Where 𝐴𝑐  is the area of smallest enclosing rectangle of the 
ground truth (GT) and the prediction result. 𝑈 is the overlap 
area between them. Inspired by [25], we further changed 
GIoU to Focal-GIoU: 

𝐿𝑜𝑠𝑠𝐹𝑜𝑐𝑎𝑙−𝐺𝐼𝑜𝑈 = 𝐼𝑜𝑈𝛾 × 𝐿𝑜𝑠𝑠𝐺𝐼𝑜𝑈 (3) 

𝛾 is a parameter to control the degree of inhibition of outliers, 
which was empirically set to 0.5 in this study. Moreover, we 
applied the SimOTA label assignment strategy that was used 
in YOLOX [9] to the training process. It analyzes the label 
assignment task from a global perspective, and provides more 
accurate and effective assignment results. The experimental 
results showed that models combined with the Focal-GIoU 
loss and SimOTA strategy did promote the detection 
performance. In Table III, for the experiments did not use 
Focal-GIoU and SimOTA, we used the default bounding box 
regression loss function and label assignment strategy of the 
respective model. 

Afterward, we tested the effectiveness of the tile-based 
strategy and presented the results of ablation study and 
comparison with the YOLO series. The basic tile-based 
preprocessing procedure increased the mAP50 values from 
the base YOLOv5m model by 2.1%. The most exciting 
conclusion is that our HRGC-Yolo outperformed all the other 
models in HR USP image detection. The detection 
performance reflected by the mAP50 value was improved by 
4.5% compared to the base YOLOv5m model. 

We noticed that the inclusion of the tile-based strategy in 
YOLOv5m and GC-YOLO reduced the detection accuracy for 
large-sized objects (casts and epith as shown in Fig. 3 iv). This 
phenomenon can be attributed to the slicing process, which 
diminished the field of view of the image. As a result, many 
large-sized objects were only partially retained in the cropped 
patches, and our algorithm did not consider them as positive 
samples. However, the tile-based strategy still exhibited a 
notable impact on the detection of small targets that are 
inherently challenging to detect. Additionally, it proved to be 
beneficial when dealing with images containing a high density 
of targets. The experimental results supported the notion that 

 

Fig. 3. The performance of our developed HRGC-YOLO, GC-YOLO and YOLOv5m in USPs detection task. The HRGC-YOLO outperforms the others, 

showing great ability in detecting small and dense objects. But its accuracy on large-sized objects is slightly lower than the GC-YOLO. 
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by dividing the image into smaller patches, the model can 
effectively capture fine-grained details and improve detection 
performance in challenging scenarios such as HR USP images. 
Nonetheless, it is important to note that this approach also 
introduces a significant increase in computational burden, 
which needs to be further improved in the future. 

IV. CONCLUTION 

In this paper, we propose a novel object detection model 
HRGC-YOLO. It is specifically designed to address the 
challenges posed by HR USP image data. We employed a tile-
based approach to preserve and utilize fine-grained 
information in large scaled images to ensure the detection 
accuracy for small objects. Additionally, the GC module 
integrated effectively captured long-range dependencies and 
enabled the model to handle complex spatial relationships 
within the image. The evaluation results on clinical collected 
dataset showed that HRGC-YOLO outperforms other object 
detectors. The ablation study further confirmed the 
significance of the tile-based procedure and the GC block we 
integrated in this model. In conclusion, our proposed method, 
HRGC-YOLO, demonstrates exceptional performance in 
accurately identifying and categorizing USPs. With its 
remarkable capabilities, HRGC-YOLO holds great promise as 
an indispensable diagnostic tool for renal and urinary tract 
diseases. 
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