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Abstract—Association of single nucleotide polymorphisms
(SNPs) with traits is the most popular method used in genome-
wide association studies. SNPs with high association are often
considered as a feasible locus for searching SNP combinations.
However, this approach has a potential pitfall: correlated SNPs
are usually not good partners to improve associations because
their combinations do not enhance the quality of trait prediction.
Therefore, a computational approach that could reduce the
redundancy of SNPs is required. To solve this issue, an approach
to reducing the SNP redundancy is proposed in this study. The
feature relevance approach was used to select an optimized
feature set which could generate the enhanced prediction per-
formance. This approach was applied for the identification of
mutations in Mycobacterium tuberculosis strains resistant to drugs.
It was found that the combination of 2-4 SNPs could achieve an
accuracy range from 65% to 90% to predict resistance for some
drugs applied for the tuberculosis treatment.

Index Terms—GWAS, SNPs, Feature Relevance, Feature Com-
binations, M.tuberculosis, Drug Resistance

I. INTRODUCTION

Genome-wide association studies (GWAS) are conducted to
identify single nucleotide polymorphisms (SNPs) associated
with a phenotype [1]. In the general context of the SNP
analysis, a prevalent method involves the individual testing of
each SNP. This entails assessing the p-value associated with
each SNP through statistical associations and subsequently
comparing these p-values to a predefined threshold. SNPs
with p-values falling below this threshold are deemed to be
associated with the trait under investigation. However, it is
imperative to acknowledge that the majority of traits are influ-
enced by a complex interplay of multiple SNPs. Consequently,
it becomes important to investigate the intricate relationships
between combinations of SNPs and the phenotypic traits of
interest.

Commonly employed methods encompass both traditional
statistical methods and machine learning approaches. For
instance, An et al. [2] employed a regression algorithm,
utilizing the LASSO regression method, to discern correlations
between SNPs and phenotypes. Mieth et al. [3] introduced an
innovative two-step algorithm, COMBI which initially trains a
support vector machine to identify a subset of candidate SNPs
and subsequently conducts hypothesis testing on these SNPs,

incorporating appropriate threshold corrections. Importantly,
a significant computational burden is unavoidably incurred
during the exploration of SNPs combinations in this search
process. In our study, we present a less computationally
demanding approach for identifying significant SNPs combi-
nations associated with phenotype. The central concept of this
approach focuses on employing the feature relevance to filter a
subset of SNPs. Within this subset, SNPs exhibit the enhanced
classification accuracy and reduced inter-SNP correlations.
The method enhances the computational efficiency of the SNPs
combination search by mitigating redundancy within the subset
of candidate SNPs.

II. MATERIALS AND METHODS

A. Data

The original data sets used in the study included the
drug susceptibility test data (DST) and genome-wide data
corresponding to these cases. These data were taken from the
tuberculosis (TB) portal [4] presenting an excellent platform
for drug-resistant TB research. The DST data provide the
verified information on the resistance or sensitivity of My-
cobacterium tuberculosis (Mtb) samples to considered drugs.
The data set C contained 3,178 samples and their resis-
tance test results to 20 drugs, including 5 first-line drugs,
namely Ethambutol (EMB), Isoniazid (INH), Pyrazinamide
(PZA), Rifampin (RIF), Streptomycin (SM), and 15 second-
line drugs, such as Amikacin (AMK), Amoxicillin-Clavulanate
(AMX-CL), Capreomycin (CM), Cycloserine (CS), Ethion-
amide (ETO), Imipenem-Cilastatin (IMI), Kanamycin (KM),
Linezolid (LZD), Levofloxacin (LFX), Mycobutin/Rifabutin
(RFB), Moxifloxacin (MFX), Moxifloxacin 0.25 (MFX 0.25),
Ofloxacin (OFX), Para-aminosalicylic acid (PAS), and Proth-
ionamide (PTH).

B. GWAS problem

For each drug d, the samples can be divided into drug-
resistant and sensitive ones. Therefore, a benchmark data set
C can be presented as

C = C+
d

⋃
C−

d ,
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where C+
d denotes a subset of resistant samples to drug d and

C−
d represents a subset of sensitive samples.
Each sample Si, i = 1, 2, ...,m, in the GWAS is a genome

consisting of four nucleotides sij ∈ {A, T,C,G}:

Si = (si,1, si,2, ..., si,n).

The size n varies for different organisms. In particular, for
Mycobacterium tuberculosis, this value is equal to 4,418,596
nucleotides. Genome sequence can contain various SNPs,
which are present in a sufficiently large part of the population
and mean a substitution of a single nucleotide at a specific
position with another nucleotide. Some SNPs are important
for the organism life and also relate to its phenotype (or
trait), in our case, a microorganism resistance to some drug.
In this case, it is assumed that a phenotype vector yd =
(y1, y2, ..., ym)t is given and yi = 1 if sample Si is resistant
to the considered drug d. Otherwise, yi = 0, and sample Si

is sensitive to this drug. Here, m is the size of the sample set
C.

The GWAS problem consists in finding genome SNPs
associated with phenotypes, if there are such SNPs. In this
case, the problem size can be reduced to analysis of the SNPs
sequence only instead of the whole genome. Suppose that
genome data set C contains a sequence x = (x1, x2, ..., xp)
of p SNPs, which are obtained comparing genome sam-
ples with a reference genome, each xi, i = 1, 2, ..., p,
corresponds to some SNP in genome samples. Then vector
xi,0 = (xi,1, xi,2, ..., xi,p) describes the SNPs values for the
genome sample Si, xi,k = 1 if SNP number k ≤ p exists in
the sample and xi,k = 0, otherwise. All SNPs in the sample
set C for a drug d are defined by the SNPs matrix:

Xd = (xi,j)m×p. (1)

The following problem is considered in the paper.
Problem 1: Given a SNPs matrix Xd (1) and a phenotype

vector yd find SNPs associated with the phenotype.
First, we investigate the association between separate SNPs,

presented in the sample set and given by vectors x0,j =
(x1,j , x2,j , ..., xm,j)

t for j = 1, 2, ..., p, i.e. by the columns of
the SNPs matrix, and the phenotype vector yd. This approach
is called a single-marker test. Secondly, the association be-
tween combinations of several SNPs and the phenotype vector
called a multi-marker test will be investigated as well. For
the second case, the problem gets a combinatorial nature and
some heuristics should be used to verify various combinations
of SNPs. One can unity column vectors corresponding to a
combination of several SNPs using various logical operations
and introduce a combined SNP into the SNPs matrix (1). In
this study, we used the logical ”or” for every coordinate of
the column vectors when uniting the corresponding column
vectors of the SNPs matrix.

C. Prediction measures

The quality of prediction of phenotype based on a SNP in
a considered genome position can be evaluated using several

measures:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Accuracy =
TP + TN

TP + TN + FP + FN

(2)

Prediction of drug resistance is based on the presence of a
SNP under consideration. If a sample is resistant to drug d
and is predicted correctly, then the prediction is considered as
true positive (TP). Similarly, if a sample is sensitive to drug d
and is predicted to be susceptible, the prediction is considered
as true negative (TN). However, there is no perfect prediction,
and, if a sample is resistant but is predicted to be sensitive,
then the prediction is considered as false negative (FN). In
analogous, if a sample is sensitive to drug but is predicted to
be resistant, the prediction result is false positive (FP). The
precision, recall and accuracy values for single SNPs can be
directly computed from the SNPs matrix and phenotype vector.

However, selection of the best combination of SNPs ac-
cording to the above criterion is a complicated combinatorial
problem. It is therefore suggested to impose the constrains
on a subset of SNPs combinations to find the appropriate
solutions The maximum number of SNPs to be tested for the
combination of SNPs will be limited by parameter q ≤ p
to reduce the computational complexity of the algorithm. Let
parameter l ≤ p limits the maximum number of SNPs to form
a combined SNP.

D. Feature set reduction

Max-Relevance-Max-Distance method [5] was applied to
introduce significance of pairs of SNPs allowing one to reduce
the redundancy between features. Given two SNPs xi and xj

define a relevance value fr(xi, xj) between them as follows:

fr(xi, xj) = (1− kp(i, j))(a(xi) + a(xj)), (3)

where kp(xi, xj) is the Pearson correlation coefficient be-
tween vectors x0,i and x0,j , corresponding to SNPs xi and
xj , and a(xi), a(xj) are the accuracy values of these SNPs
calculated by formula (2).

The relevance values of SNP pairs are used here to select a
subsequence xq of q ≤ p relevant SNPs from some initial
sequence x = (x1, x2, ..., xp) . This subsequence will be
used further to find combinations of SNPs associated with a
phenotype. A selection procedure is organized as follows. Let
us choose a pair of SNPs (xi, xj) from the sequence x with
the maximum relevance value fr(xi, xj). If several pairs with
the maximum relevance value exist, a pair with the smallest
value min{i, j} of their indexes should be taken. SNPs xi and
xj are then removed from the sequence x and added to the
sequence xq . A new pair of SNPs (xi1 , xj1) in the updated
sequence x with the highest relevance value is selected and
the sequence xq is updated. After q/2 similar steps, one gets
the sequence xq containing q SNPs.

The following Algorithm 1 is proposed for identification
of combinations of SNPs associated with the resistance to
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a considered drug. Note that parameter l ≤ p limits the
maximum number of initial SNPs to form a combined SNP.

Algorithm 1 Combination of SNPs

Given a sequence of SNPs x = (x1, x2, ..., xp) sorted
in non-ascending order of their accuracy values a(x1) ≥
a(x2) ≥ ... ≥ a(xp), compute the relevance values for each
SNP pair.

Select a subsequence xq of q ≤ p relevant SNPs from the
sequence x .

Calculate accuracy values for all combined SNPs from the
sequence xq consisting from up to l initial SNPs.

III. RESULTS

A. Characterization of the dataset

Table I presents the distribution of sensitive and resistant
samples for each drug in the dataset.

TABLE I
CHARACTERIZATION OF THE DATASET

Drug Sensitive Resistant Drug Sensitive Resistant

EMB 839 617 INH 438 977
PZA 447 498 RIF 627 933
SM 539 875 AMK 942 1302
AMX-
CL 626 297 MFX

0.25 254 137

CS 810 576 ETO 155 158
IMI 384 180 KM 861 767
LFX 777 1188 LZD 719 766
MFX 1159 413 CM 943 1185
OFX 589 385 PAS 705 1264
PTH 605 1127 RFB 197 169

B. Comparison of SNP combinations

The accuracy values were computed for all drugs and SNPs
associated with drug resistance (p-values computed by the
Fisher exact test were ≤ 10−5). Combinations of SNPs for
q = 50 and l = 5 were found using Algorithm 1. Fig. 1 shows
how the accuracy values depend on the number of SNPs in
the combined mutations.

The most significant combinations with up to l = 5 SNPs
were further compared using prediction measures (2). The
results of this evaluation for the accuracy measure for the
first-line and second-line drugs are shown in Tables II and
III, respectively. In these tables, the combined SNPs with
the maximum prediction accuracy for drug resistance are
presented.

IV. CONCLUSION

Genome-wide association studies confront formidable chal-
lenges, primarily stemming from the high dimensionality of
data and the substantial computational burden, notably in the

TABLE II
RESULTS FOR THE FIRST-LINE DRUGS

Drug SNP Combination Accuracy

EMB rs4248003 & rs4247429 & rs4247431 &
rs1473246 & rs764817 0.80

INH rs2155168 & rs761155 0.896

PZA rs2155168 0.722

RIF rs2155168 & rs761155 0.885

SM rs2155168 & rs761155 0.805

TABLE III
RESULTS FOR SECOND-LINE DRUGS

Drug Combination of SNPs Accuracy

AMK rs2155168 0.782

AMX-CL rs1473246 0.838

CM rs2155168 0.686

CS rs7582 & rs7570 0.792

ETO rs761155 & rs1673425 0.645

IMI rs3380439 & rs1637255 & rs2196858 0.700

KM rs7582 & rs1473246 & rs7570 0.749

LFX rs2155168 0.745

LZD rs2155168 & res761155 0.864

MFX rs1473246 0.805

MFX 0.25 rs3738503 & rs7582 & rs7570 &
rs1473246 0.747

OFX rs2030634 &rs7582 & rs7570 0.754

PAS rs2155168 & rs761155 0.851

PTH rs2155168 0.775

RFB rs2715344 & rs4247429 & rs1161026 0.708

exploration of SNPs combinations. To address these chal-
lenges, it becomes imperative to reduce the number of SNPs
under consideration for testing their combinations. The Max-
Relevance-Max-Distance method offers a valuable approach
for streamlining the set of SNPs, focusing solely on the rele-
vant features. While this approach may not yield optimal SNP
combinations, it does enhance the associations between SNP
combinations and phenotypes when compared to individual
SNPs in certain scenarios.

We introduced an effective approach for constructing feature
combinations adapted for GWAS, which was tested in the
context of drug resistance of Mycobacterium tuberculosis. For
each of the 20 examined drugs, we obtained combinations
of no more than 4 SNPs associated with drug resistance.
Our results indicate accuracy levels ranging from 65% to
90%, testifying to the efficacy of the proposed approach to
identifying SNPs combinations for GWAS.
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Fig. 1. For each of the 20 different drugs, combinations of SNPs most significantly associated with drug resistance were identified. Each subfigure represents
a drug and the prediction accuracy of combinations consisting from l ∈ {1, 2, 3, 4, 5} SNPs.
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