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Abstract—High-resolution remote sensing images have high
clarity and provide significant support for urban planning,
resource management, environmental monitoring, and disaster
warning. Semantic segmentation accurately helps extract the
boundaries of objects, thereby increasing the application value
of scene understanding. Traditional encoder-decoder architec-
ture networks lack multi-scale information fusion and fail
to capture precise multi-scale semantic information, when
segmenting targets at different scales. Additionally, these
semantic segmentation networks have inadequate handling of
class-imbalanced data, resulting in unsatisfactory classification
results and final segmentation effect. This paper proposes a
semantic segmentation network based on residual blocks and
multi-scale feature fusion. Building upon the U-Net network,
we design residual modules and multi-scale feature fusion
modules to extract information-rich feature maps. Then, the
multi-scale feature fusion module is used to interpolate and
upsample the obtained feature maps, which are then concate-
nated with feature maps at the same layer, resulting in a
novel fusion feature map. In experiments, the performance
of the proposed model surpasses U-Net with improvements
reaching 6.06% for MIoU. The introduced network identifies
complex land features including dense distribution of objects,
small objects, large differences in object characteristics and
complex background effectively preserves and restores feature
information by incorporating the multi-scale feature fusion
module, achieving higher precision segmentation results and
providing rich multi-scale and spatial information.

Index Terms—deep learning, high-resolution, semantic seg-
mentation, residual block, multi-scale feature fusion

I. Introduction

Semantic segmentation of high-resolution remote sens-
ing images plays a crucial role in various fields such as land
resource investigation, natural disaster monitoring, and
national security. It aims to label each pixel in an image
with a corresponding semantic class, dividing the image
into meaningful semantic regions. Unlike traditional image
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segmentation, semantic segmentation requires classifying
each pixel into classes with semantic meanings, such as
pedestrians, vehicles, roads, and buildings. Semantic seg-
mentation of remote sensing images enables the efficient
extraction of category and geometric information from
different scenes.

However, due to the characteristics of remote sensing
data, semantic segmentation poses greater challenges than
natural images. The challenges arise from the large data
volume and high computational complexity associated
with high-resolution, wide-range, and multi-spectral re-
mote sensing images. Furthermore, remote sensing images
capture diverse and complex targets, including buildings,
roads, vegetation, etc., making segmentation diverse and
complex.

Image segmentation methods can be divided into tradi-
tional image segmentation and deep learning-based image
segmentation. Traditional methods are usually based on
heuristic rules or statistical models, which have relatively
low model complexity. Deep learning methods typically
employ deep neural network models with higher model
complexity and parameters. This enables deep learning
methods to have stronger expressive power and flexibility,
making them suitable for more complex image segmenta-
tion tasks.

High-resolution image segmentation in deep learning
networks aims to divide images into different regions or
objects with semantic or structural significance. This task
is of great importance for applications such as image
understanding, scene analysis, object detection and image
processing [2] [3] [4]. In high-resolution image segmenta-
tion, the goal is to assign each pixel to its corresponding
semantic category or region, thus achieving a fine-grained
analysis of the image. This segmentation result provides
more detailed and accurate image information, making
subsequent analysis and processing tasks more precise and
efficient. To achieve high-resolution image segmentation,
researchers have used various techniques and methods [5].
By using deep neural networks such as Convolutional
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Neural Networks (CNN) and its variants, it is possible to
learn feature representations and semantic information,
thereby achieving pixel-level segmentation.

In semantic segmentation models, downsampling is
employed in the encoder to extract features, gradually
reducing the size and channel number of feature maps,
leading to information loss. Thus, efficiently extracting
target features, preserving them during the extraction and
reconstruction processes, and minimizing information loss
are crucial for achieving semantic segmentation. The main
work of this paper is as follows:

The proposed remote sensing image semantic segmen-
tation network is based on residual blocks and multi-scale
feature fusion to improve segmentation performance.

The proposed decoder part of the model incorporates
a multi-scale feature fusion module to better capture
multi-scale semantic information. By combining bilinear
interpolation and deconvolution operations during the up-
sampling process, we address the issue of target boundary
detail processing insufficiency, thereby preserving image
smoothness and detail feature information.

We conduct experimental analysis using the WHDLD
dense labeling dataset to validate the accuracy of the
proposed model [1]. Results demonstrate that the pro-
posed residual blocks enables better identification of com-
plex land targets, achieving higher accuracy. Moreover,
the incorporation of multi-scale feature fusion modules
effectively preserves and restores feature information,
providing richer multi-scale and spatial information as
substantial support for prediction.

II. The Method
A. Model Architecture

Traditional CNN semantic segmentation models suffer
from the problems of feature information loss and blur-
ring during experimentation. This is mainly due to two
reasons. Firstly, remote sensing images contain abundant
geographical information, and the quality of the images
is unstable due to factors such as shadows. This affects
the accuracy and robustness of the semantic segmentation
task. Secondly, the characteristics of upsampling and
downsampling lead to the loss of feature information,
thereby affecting the segmentation accuracy.

In order to achieve semantic segmentation of remote
sensing images, this section proposes a semantic segmen-
tation network based on residual blocks and multi-scale
feature fusion called RMNet, as shown in Fig . 1. RMNet
aims to introduce residual blocks and increase the depth
of the network within a reasonable range to enhance
feature representation capability. In the decoding part,
a combination of bilinear interpolation and deconvolution
is used for upsampling, and the output is concatenated
with the same-level feature information through the concat
operation to complete the decoding and obtain detailed
features.
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Fig. 1. RMNet network structure.

B. Encoder

Due to the high-resolution and complex nature of
objects in remote sensing images, our work employs
ResNet50 as the feature extraction network for better
feature extraction. The input image size is illustrated in
the schematic diagram of the feature extraction network
(Fig. 2).

The structure consists of a convolutional layer and
four residual blocks. Each residual block is composed
of important modules or bottleneck modules, which are
concatenated optimally. The basic module uses two 3x3
convolutions and a shortcut connection to implement
the residual structure. The bottleneck module reduces
the number of channels with a 1x1 convolution, extracts
features with a 3x3 convolution, and increases the number
of channels with another 1x1 convolution. A 1x1 convo-
lution is used in the shortcut connection to adjust the
number of channels. The basic module is suitable for low-
dimensional input data, while the bottleneck module uses
more channels and fewer convolutional kernels to reduce
the number of parameters and computations, making it
suitable for high-dimensional input data. Therefore, in
Stage 2, three basic modules are used for shallow feature
extraction, while Stage 3, 4, and 5 respectively use 4,
6, and 3 bottleneck modules for deep feature extraction.
The residual structure solves the problems of gradient
vanishing or degradation in traditional deep networks by
introducing skip connections. It accelerates the training
process, improves the network’s expressive power, and
makes deep networks easier to train and optimize.

C. Decoder

To generate pixel-level results in semantic segmentation,
feature maps need to be upsampled to restore low-
resolution feature maps to the size of the original image.
Deep feature maps contain more semantic information
that can be used for feature recognition and classification.
Therefore, to enhance segmentation accuracy for semantic
segmentation tasks, it is necessary to consider both the
low-level features and semantic information of the image.
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Fig. 2. Feature extraction network structure.

This necessitates the fusion of features from different
levels.
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Fig. 3. MSFM module structure schematic.

In this section, we propose the MSFM module, as shown
in Fig. 3. Firstly, the feature maps are subjected to
deconvolution to map from low-level features to high-level
features. To preserve the integrity of the low-level features,
a bilinear interpolation method is utilized. Our method
helps retain the detailed information of the original image.
Next, the obtained feature maps are combined to yield
a comprehensive and rich set of features. Our resulting
feature information is concatenated with the feature in-
formation from the same layer encoder, creating a more
enriched feature layer. The fusion of low-level features
with semantic information provides the network with a
more diverse range of channel information, which supports

accurate predictions. Finally, our concatenated feature
map undergoes two additional convolution operations
to refine the feature maps and extract more valuable
information, thus improving the accuracy of semantic
segmentation.

D. Loss Function

Since the majority of pixels are typically background,
there is an imbalance between foreground and background.
To address this issue, we adopt the DiceLoss function. This
function focuses more on foreground region exploration to
ensure a low number of false negatives, which can lead
to loss saturation. To mitigate this saturation issue, we
combine the FocallLoss with the DiceLoss. The final loss
function is:

L = DiceLoss + A - Focal Loss, (1)

where X represents the coefficient of FocalLoss in the whole
loss function. This paper sets A to 0.9.
The expression of DiceLoss is:

2(XNY|+S

DiceLoss=1— ——+——
I X|+ Y|+ S
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where |X| and |Y]| represent number of predicted and
true values respectively, while |X N Y| represents the
intersection of x and y. The parameter S is introduced
in the formula with a value of 1072, it helps prevent
overfitting.

The expression of FocalLoss is:

FocalLoss = —a; (1 — p;)Y log(p:), (3)

where p; represents the probability of correctly classifying
the predicted sample, while both «a; and v are adjustable
factors. This study sets a; and v to 2 and 0.25 respectively.

III. Experiment
A. WHDLD Dataset and Evaluation

WHDLD is a collection of 4940 RGB images in 256
x 256, captured by the Gaofen 1 and ZY-3 Satellites,
specifically focusing on the Wuhan urban area. It contains
six types of remotely sensed feature types, extracted
from UC Merced and released by Wuhan University
in 2018. The targets are divided into bare, building,
pavement, road, vegetable and water. In order to verify
the effectiveness of the method, we compare and analyze
RMNet with common semantic segmentation models. In
which all network models are trained with an epoch of
100, and save the optimal weight file obtained after the
training is completed, the prediction was performed on the
test set, and the accuracy evaluation of the comparison
experiments is shown in Table I:

TABLE 1
Experimental results of different model on WHDLD
Model OA AA K mloU Fy
SegNet [6] 80.229 | 63.787 | 71.403 | 52.940 | 66.529
U-Net [7] 81.830 | 67.724 | 74.422 | 55.706 | 68.567
Tiramisu [8] 82.188 | 70.712 | 74.903 | 58.167 | 71.276
FGC [9] 82.975 | 68.855 | 75.927 | 57.368 | 70.274
MSFCN [10] 84.168 | 72.081 | 77.558 | 60.366 | 73.031
CNet+RBM 82.216 | 70.934 | 75.004 | 56.957 | 69.618
CNet+MSFM | 82.934 | 71.307 | 76.288 | 58.019 | 71.530
RMNET 84.395 | 73.320 | 78.895 | 61.763 | 73.852

The performance of different model on WHDLD is
shown in Tables I and II. OA and AA represent overall
accuracy and average accuracy respectively, while K and
Fy represent Kappa coefficient and Fj score respectively.
RMNet demonstrates improvements in all F; score perfor-
mance metrics, all six models perform better in segmenting
road and water, but encounter challenges in segmenting
sidewalks and vegetation. The analysis of predicted images
in the test set suggests that shadows and other effects may
cause sidewalks and vegetation to appear similar to road
and water in color performance. Fig. 4 presents the results
of three models.

The overall segmentation effect is more accurate and
the edges of the features are relatively smoother and more

accurate. In comparison, MSFCN reduces miss classifica-
tion in larger regions compared with the U-Net model, and
overall, its performance is relatively satisfactory. However,
there are still some miss classification issues in certain
detail regions. The classic U-Net misses classification
results and its overall effect is weak.

B. Ablation Experiment

This section discusses the residual module (RBM) and
the multiscale feature fusion module (MSFM). The effects
of each module on the segmentation results are explored
and analyzed through ablation experiments conducted
using the control variable approach. The model without
the introduction of both modules is referred to as a normal
convolutional network (CNet).

The effectiveness of the network for segmentation of
detail regions and its vulnerability to segmentation leakage
were observed after removing the MSFM module, as shown
in Fig. 4. This suggests that the integration of low-
level features and the fusion of low-level features with
semantic information are essential for achieving effective
semantic segmentation. The removal of the RBM module
leads to rougher segmentation results, increased leakage,
and incorrect segmentations, indicating the model’s sub-
optimal performance.

The evaluation indexes have decreased to different
degrees when moving out of each module, as shown in
Tables I and II. Specifically, when the MSFM module is
removed, there is a slight decrease in each indicator. This is
mainly due to the loss of detail feature information after
removing the MSFM board. As a contrast, the MSFM
module preserves low-level features of the image. These
features are then combined with the feature information
of the same layer through the concat operation, resulting
in a richer feature layer. This fusion of low-level features
with semantic information provides strong support for the
network’s accurate prediction. As for RBM module, it
utilizes residual blocks and cross-layer connections that
enable direct transfer of information between different
layers. This effectively reduces overfitting and improve the
generalization ability. Furthermore, RBM facilitates faster
training speed and higher accuracy can be achieved.

IV. Conclusion

This work proposes a semantic segmentation network
for remote sensing images based on residual blocks and
multi-scale feature fusion. The network architecture con-
sists of an encoder stage to perform deep feature extraction
and a decoder stage enhances image segmentation accu-
racy and robustness by integrating low-level and high-level
feature information. The proposed semantic segmentation
network has several advantages. Firstly, it significantly
improves segmentation accuracy and the ability to locate
and segment the target accurately. Secondly, it reduces
false detections, thereby filtering background interference
and improving the reliability of semantic segmentation.
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Fig. 4. Prediction results of different methods and ablation experiment.
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TABLE II
F1 score index results for each category of the experiment

Model bare building | pavement road vegetable | water
SegNet [6] 47.682 63.253 51.466 54.649 86.473 95.649
U-Net [7] 43.097 70.752 52.609 58.668 89.185 97.089
Tiramisu [§] 50.313 68.918 53.576 70.047 88.206 96.598
FGC [9] 50.282 72.642 53.842 57.931 89.651 97.294
MSFCN [10] 52.178 74.499 55.177 68.797 90.024 97.511
CNet+RBM 49.010 69.271 53.760 60.143 88.522 97.003
CNet+MSFM | 49.694 73.380 54.048 65.312 89.502 97.244

RMNet 51.242 78.147 55.829 69.434 90.506 97.956

Additionally, the network maintains a fast-processing
speed while achieving high accuracy, enhancing its real-
time performance. Ablation experiments are conducted on
the residual block and multi-scale feature fusion module,
demonstrating their contribution to the segmentation
task.

Future research should consider breaking through the
limitations of CNN, for example, the initial stage of the
network using CNN can only utilize local information due
to the limited size of the convolutional kernel, thus result-
ing in a lack of comprehensive understanding of the input
image, and subsequently impact the distinguishability of
the features extracted by the encoder at the end.
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