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Abstract. In this paper we consider the problem of searching shortest paths between all pairs of vertices of a
directed weighted sparse graph which is partitioned into clusters by finding dense weakly connected subgraphs. We
address this problem by developing new block-based algorithms that describe the shortest paths by matrices of
blocks of unequal sizes corresponding to the sizes of the graph clusters. These algorithms extend the capabilities of
known existing algorithms using blocks of equal size (such as the blocked algorithms of Floyd-Warshall family) with
respect to adequate graph modeling of real networks of different purposes, and with respect to efficient use of
parallelism and computational resources of multiprocessor systems and multi-core processors. The blocked
algorithm of finding shortest paths in sparse large size graphs partitioned into clusters that is proposed in this paper
reduces, on the one hand, the amount of memory used, and, on the other hand, reduces the number of block
recalculations. Diagonal blocks describe shortest paths within clusters, non-diagonal compact blocks describe non
numerous weighted arcs connecting clusters. Shortest paths between vertices of different clusters are computed in
real time. The memory consumption is reduced compared to the Floyd-Warshall algorithm to a number of times
equal to the number of clusters. In order to reduce the number of block recalculations, a new operation is introduced
to accurately compute the shortest path between vertices of one cluster, passing through the vertices and edges of
another cluster, as well as through the edges connecting the clusters. Applying this operation alone allows us to find
solutions that introduce a small error (a few percent) in the lengths of the shortest paths when the weights of edges
between clusters are small, and allows us to find exact solutions when the weights of these edges are increased.
Accurate solutions can be obtained for sparse graphs modeling road, computer, and other networks.

Keywords: sparse graph, cluster, APSP problem, blocked algorithm, unequally sized blocks, heterogeneous
system.

Introduction. The problem of finding shortest and longest paths for all pairs of vertices in
a large sparse weighted graph [1 – 6] has many application domains. Recently the emergence of
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heterogeneous parallel computing systems [7 – 9] has increased interest in this problem. Many
competitive algorithms are developed for various types of graphs and for different formulations
of the problem: between two vertices; between the source (sink) and each other vertex (single
source and single sink  SSSP); between each pair of vertices (all pairs shortest pathsAPSP); to
meet the requirement that all graph vertices must be listed on the path, etc.

The paper considers the APSP problem and algorithms [10, 11] of solving it. Two families
of the APSP algorithms exist: 1) based on the Dijkstra SSSP-algorithm [1]; 2) based on the
Floyd-Warshall APSP-algorithm [2]. The first family includes the Dijkstra algorithm [1], the
Bellman-Ford algorithm [12], the Johnson algorithm [13], the Harish and Narayanan algorithm
[14], and others [15]. The second family includes among others the Floyd-Warshall (FW)
algorithm [2], the blocked Floyd-Warshall algorithm (BFW) proposed in [7, 10, 11] by Katz,
Venkataraman and others, the graph extension-based algorithm (GEA) and the heterogeneous
blocked APSP algorithm (HBAPSP) both proposed by Prihozhy and Karasik in [16 – 18]. The
algorithms can be parallelised by OpenMP [19]. The results as follows have been obtained based
on the idea of using blocks: a recursive blocked FW algorithm [10]; efficient usage of GPUs [7 –
9]; solving sparse graph scaling problem [20]; optimization of data allocation in hierarchical
memory [21]; improving cache performance for APSP [11, 17, 22]; a cooperative threaded
algorithm [23, 24]; selection of the optimal block-size [25]; reducing energy consumption [26];
search for shortest paths using dataflow networks of actors [27, 28]. In work [5], a method of
inferring new blocked algorithms which divide the input graph into unequal subgraphs and
divide the matrix of shortest path distances into blocks of unequal sizes has been proposed.

The key contribution of the paper is a fast and memory efficient blocked algorithm of
computing the shortest paths within unequally sized clusters of a large sparse graph and
computing the shortest paths between vertices of different clusters in real time.

Blocked all-pairs shortest paths algorithm for unequally sized blocks. Let G = (V, E)
be a simple directed graph with real edge-weights consisting of a set V, |V| = N of vertices
numbered 1 through N and a set E of edges. Let W be a cost adjacency matrix for G. So,
w(i, i) = 0, 1  i  N; w(i, j) is the cost (weight) of edge (i, j) if (i, j)  E and w(i, j) = ∞ if i ≠ j
and (i, j)  E. Let dij be a length of shortest path from vertex i to vertex j, and D be a matrix of
distances between all pairs of vertices i, j  V, i ≠ j. Let P be a matrix whose element pij is a
vertex that is previous for vertex j in a path from i to j. The objective of an APSP-algorithm is to
compute the D and P matrices for a given graph G.

In work [5], we have proposed to decompose the graph G into subgraphs (clusters) and
decompose the matrix B into blocks of unequal sizes defined by vector S = (S1…SM) (Figure 1,a).
While M blocks are square on the principal diagonal of B (block Bii has the Vi  Vi size), all other
blocks are rectangular in general case (block Bij has the Vi  Vj size for i, j = 1…M, i ≠ j). All
blocks in row i have the height of Vi, and all blocks in column j have the width of Vj. Matrix P of
previous vertices in the shortest paths has the same structure.

At the aim of processing unequaly sized clusters, we extended the known blocked Floyd-
Warshall algorithm BFW to the all-pairs shortest path algorithm BFWUS [5], which can handle a
block-matrix B of unequally sized blocks. BFWUS is described by Algorithm 1. In a loop along
m that performs M iterations, it recalculates each of M2 blocks of matrix B, therefore, it carries
out M3 recalculations in total. In terms of vertex count, the time complexity of BFWUS is N3 and
the memory complexity is N2 since each block has the layout (Figure 1,b) of matrix of shortest
path distances (DiM).

Figure 2 illustrates the operation of BFWUS and depicts the order of calculating blocks.
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a) b)
Figure 1. Blocked matrix B of shortest paths distances: a) diagonal blocks are square and non-

diagonal blocks are rectangular; b) BFWUS represents all blocks by matrix of shortest path
distances (DiM)


Algorithm 1: Blocked APSP algorithm accounting for blocks of unequal
sizes (BFWUS)

Input:A number N of vertices in input graph
Input:A matrix W[NN] of graph edge weights
Input:A vector S = (S1…SM) of sizes of vertex subsets
Input:A number M of blocks per row (column)
Output:A blocked matrix B[MM] of path distances
Output:A blocked matrix P[MM] of previous vertices in shortest paths
for i, j 1 to N do

ifW(i, j)   then Pinit(i, j)  i else Pinit(i, j)  undefined
B[MM] W[NN] P[MM]  Pinit[NN]
for m 1 to M do
USBC (S, B, P, m, m, m) // D0
for v 1 to M do

if v  m then
USBC (S, B, P, v, m, m) // C1
USBC (S, B, P, m, m, v) // C2

for v 1 to M do
if v  m then

for u 1 to M do
if u  m then
USBC (S, B, P, v, m, u) // P3

return B, P


Algorithm 2 describes a block-calculation procedure USBC which has a feature of processing
blocks of unequal sizes. The algorithm inputs are metrices B and P which describe blocks of
sizes defined by vector S. Indices v, m and u choose in matrix B three blocks Bv,u, Bv,m and Bm,u of
which two or three can be identical. The indices choose similar blocks in matrix P. The sizes of
blocks are Sv  Su, Sv  Sm and Sm  Su respectively. USBC consists of three nested loops. It
makes Sm Sv Su attempts to update the values of elements of blocks Bv,u and Pv,u. The order of
loops is essential. The loop along k must be the outer, it cannot be reordered with other loops.
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The key difference USBC against Floyd-Warshall is that the non-diagonal blocks are rectangles
but squares.

Step 1 Step 2

Figure 2. Illustration of BFWUS operation: cross moves from top-left to bottom-right corner of
blocked matrix B; first, block D0 is calculated through itself; second, blocks C1 and C2 are

calculated through D0; third, blocks P3 are calculated through C1 and C2


Algorithm 2: Calculation of unequally sized blocks (USBC)

Input:A vector S of sizes of graph vertex subsets
Input:A blocked matrix B[MM] of path distances
Input:A blocked matrix P[MM] of previous vertices in shortest paths
Input: Indices v, m and u of vertex subsets
Output: Recalculated block Bv,u of matrix B
Output: Recalculated block Pv,u of matrix P
for k 1 to Sm do

for i 1 to S v do
for j 1 to Su do

sum Bv,m(i, k) + Bm,u(k, j)
if Bv,u(i, j) > sum then

Bv,u(i, j)  sum
Pv,u(i, j)  Pm,u(k, j)

return B, P


Computation of shortest paths between vertices within two clusters through neighbor
cluster and interconnecting edges. In case of matrix B[22], the BFWUS algorithm calculates
two diagonal and two non-diagonal blocks in the following way:

B11[S1S1]  B11[S1S1]  B11[S1S1] (1)
B21[S2S1]  B21[S2S1]  B11[S1S1] (2)
B12[S1S2]  B11[S1S1]  B12[S1S2] (3)
B22[S2S2]  B21[S2S1]  B12[S1S2] (4)
B22[S2S2]  B22[S2S2]  B22[S2S2] (5)
B12[S1S2]  B12[S1S2]  B22[S2S2] (6)
B21[S2S1]  B22[S2S2]  B21[S2S1] (7)
B11[S1S1]  B12[S1S2]  B21[S2S1]. (8)
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Equations (1) – (4) calculate block B22 through block B11. First, diagonal block B11 is
calculated through itself using (1). Operator  denotes a matrix MIN-PLUS multiplication
operation. Then blocks B21 and B12 are calculated through B11 using (2) and (3). After that,
diagonal block B22 is calculated through blocks B21 and B12 using (4). Equations (5) – (8) perform
similar operations in opposite direction, i.e. from block B22 to block B11. It is important that three
operations are needed to calculate B22 through B11, i.e. (2), (3) and (4). Similarly, three operations
are needed to calculate B11 through B22, i.e. (6), (7) and (8). To accomplish it, two intermediate
blocks are additionally calculated, i.e. B21 and B12. For large sparse graphs, BFWUS requires a
huge amount of memory space and processor time. For very large graphs it is unjustified and
practically unacceptable.

We propose a new method of computing B22 through B11 (and similarly B11 through B22).
The method allows to account for features of sparse graphs with clustered vertices, to reduce the
amount of consumed memory space, to decrease the number of matrix MIN-PLUS operations
executed over blocks.

Let two clusters Clust11 and Clust22 divide the vertex set V of graph G into two subsets V1
and V2 of unequal sizes S1 and S2 (Figure 3,a). The vertices of clusters Clust11 and Clust22 are
connected by edges from Con12 and Con21. As a result, we obtain a matrix B consisting of four
blocks (Figure 3,b). Blocks B11 and B22 initially describe the internal weighted edges of the
clusters, and then describe the shortest path lengths between vertices of set V1 and between
vertices of set V2. Sparse blocks W12 and W21 describe weighted edges connecting vertices of V1
to vertices of V2 and vice versa respectively. Figure 3,c shows that blocks B11 and B22 are placed
in memory as matrices of distances (DiM) using row-major memory layout, and blocks W12 and
W21 are placed as adjacent lists (AjL).

a) b) c)
Figure 3. Dividing graph to clusters: a) diagonal blocks are clusters and non-diagonal blocks

describe connections between clusters; b) blocks B11 and B22 describe shortest path lengths and
blocks W12 and W21 describe weighted edges; c) diagonal blocks are represented by matrix of

distances (DiM) and non-diagonal blocks are represented by adjacent lists (AjL)

Our method of computing block B22 through block B11 and vice versa consists in
performing the following five operations:

B11 ← Diagonal(B11) (9)
B22 ← BlockThroughBlock(B22, W21, B11, W12) (10)
B22 ← Diagonal(B22) (11)
B11 ← BlockThroughBlock(B11, W12, B22, W21) (12)
B11 ← Diagonal (B11) (13)

Operation Diagonal (Bii) calculates the shortest paths between all vertices of block Bii; the
paths can traverse through edges within Bii and outside it. The operation can be performed using
(1) or can preferably be implemented by the fast GEA algorithm proposed in [16, 17].



Десятая Международная научно-практическая конференция «BIG DATA and Advanced Analytics. BIG DATA
и анализ высокого уровня», Минск, Республика Беларусь, 13 марта 2024 года

267

New operation BlockThroughBlock(Bjj, Wji, Bii, Wij) calculates the shortest paths between
vertices of block Bjj. It traverses through edges of block Wji, then through vertices and edges of
block Bii and finally through edges of block Wij. Since the edges of blocks Wji and Wij are not
numerous in the sparse graph, the BlockThroughBlock operation is fast. When Wji or Wij is empty,
BlockThroughBlock is not executed at all. Moreover, the shortest paths of these blocks do not
need to be stored in memory, only edge descriptions are needed to store. This is a big advantage
of our method which yields accurate solutions. The shortest paths between vertices of different
clusters are calculated in real time. It is easier to compute the shortest paths between clusters
after computing shortest paths within clusters.

Approximate fast algorithm of computing all-pairs shortest paths in clusters of sparse
graph. We have developed an approximate APSP algorithm operating on graph clusters
(AAPSPC) aiming at reduction of the consumed memory space and CPU time. Figure 4,a shows
the content of matrix B and Figure 4,b depicts the matrix representation and placement in
memory. Clusters are placed in the matrix principal diagonal, and interconnections of clusters are
represented by graph edges (blocks of matrix W) allocated outside of principal diagonal. Clusters
are represented by matrices of shortest path distances (DiM). Blocks of matrix W are represented
as adjacent lists (AjL).

a) b)
Figure 4. Matrix B of shortest paths distances in clusters: a) diagonal blocks Bii are clusters and
non-diagonal blocks Wij represent edges connecting clusters; b) each cluster is represented by

distances matrix (DiM) and each non-diagonal block is represented by adjacent list (AjL)

Algorithm 4 specifies AAPSPC. Its input data are the vertex subsets corresponding to
clusters, and their sizes. Matrices B = W and P describing initial states of shortest paths in
clusters are also input data. The algorithm output data are the completely calculated diagonal
blocks of matrices B and P.

The algorithm consists of two loop nests of depth two. The first nest traverses the diagonal
blocks from the left-top to right bottom corner of the matrices and calculates the shortest paths of
each succeeding block through previous blocks. The second nest does the same work in reverse
order. Totally M diagonal blocks are calculated. The overall number of the diagonal block
recalculations AAPSPC performs is

��� � = � ∙ � + 1 . (14)

It is almost M times smaller than the number M3 of block recalculations BFWUS performs.
Function Diagonal*(S, B, P, d) is implemented using operation Diagonal(Bdd). Function

BlockThroughBlock*(S, B, P, d, p) is implemented using operation BlockThroughBlock(Bdd, Wdp,
Bpp, Wpd).
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Algorithm 4: Computing all-pairs shortest paths in clusters of sparse
graphs (AAPSPC)

Input: Subsets V = (Vi, … VM) of set V of graph clustered vertices
Input:A vector S = (Si, … SM) of sizes of graph vertex subsets
Input:A blocked matrix B[MM] representing graph
Input:A blocked matrix P[MM] of previous vertices in shortest paths
Output: Recalculated matrix B[MM]
Output: Recalculated matrix P[MM]

for d 1 to M do
Diagonal’(S, B, P, d)
if d > 1 then

for p 1 to d – 1 do
BlockThroughBlock*(S, B, P, d, p)

for dM down to 1 do
Diagonal’(S, B, P, d)
if d > 1 then

for p d – 1 down to 1 do
BlockThroughBlock*(S, B, P, p, d)

return B, P


The calculation of shortest paths between vertices of different clusters is carried out in real
time through the earlier computing of shortest paths between vertices within clusters.

Let’s estimate the volume of storage needed for allocation of matrix B in algorithms
BFWUS and AAPSPC. BFWUS uses the DiM representation of all blocks, Therefore,
storage(BFWUS) = N2. The amount of storage consumed by AAPSPC can be estimated as

������� ������ = �������(��������) + �������(�����), (15)
�������(��������) = �=1

� ��
2� (16)

where c is a cluster; M is the number of clusters; Sc is the number of vertices in cluster c;
storage(Edges) is the size of all non-diagonal blocks Wij describing interconnect edges. For
sparse graphs, storage(Edges) is not huge.

Let’s consider the bounding case when all clusters have the same size Sc = N / M. Then the
amount of storage they need for placement is

������� �������� = �
�

2
∙ � = �2

� (17)

It is M times smaller than BFWUS needs. If the clusters are of unequal sizes, the gain is
reduced. We conclude that AAPSPC consumes a much smaller amount of memory compared to
BFWUS in case of sparse graphs. It is a very big advantage in the case of searching for the
shortest paths in very large sparse graphs.

At the same time, AAPSPC has a drawback: it considers only shortest paths that go from
one cluster to another (maybe iteratively) and return to the former cluster. It accounts for not all
paths passing through several clusters before returning to the source . It is important to know
what inaccuracies arise in calculating the shortest path distances due to these restrictions. We
have done experiments with AAPSPC with respect to the inaccuracies.
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For instance, we provide results obtained on a directed weighted graph consisting of 4
clusters, 128 vertices and 1502 edges with the average weight of 55.54. Figure 5 shows that the
inaccuracies in computing the shortest path lengths are small and vary in the range 1.1778 %
down to 0.0 % depending on the weights of edges that connect clusters. The inaccuracies
disappear at the average weight of 23 which is 41.4 % compared to the average weight of edge
within clusters. AAPSPC yields an accurate shortest path distances between all pairs of vertices
in all clusters for all interconnect edge weights larger than 41.4 %.

Figure 5. Inaccuracy (vertical axis, %) in computation of shortest path distances vs. share
(horizontal axis, %) of average weight of edge between clusters in average weight of edge within

clusters

Right reordering of clusters in matrix B can decrease the required number of block
recalculations or / and reduce the inaccuracies in computations of shortest paths. Incorporating
Dijkstra algorithm [1] or any algorithm of Dijkstra’s family in AAPSPC is the way of avoiding
the inaccuracies in shortest paths computation and obtaining accurate solutions.

Conclusion. The paper solves the all-pairs shortest paths problem on sparse graphs
partitioned into clusters by finding dense weakly connected subgraphs. The approach we propose
is based on recently published blocked algorithms which divide the graph into unequally sized
subgraphs. We have developed an operation of computing the shortest paths between vertices of
one cluster passing through vertices and edges of neighbor cluster, and through edges connecting
the clusters. This allowed us to develop a fast and memory efficient approximate algorithm that
first computes the shortest paths between vertices within each cluster and then computes shortest
paths between vertices of different clusters in real time. The algorithm gives accurate solutions
for road, computer and other networks in which the weights of edges connecting clusters are
typically at least as large as the weights of edges within clusters.
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БЛОЧНЫЙ АЛГОРИТМ ПОИСКА КРАТЧАЙШИХ ПУТЕЙ В
РАЗРЕЖЕННЫХ ГРАФАХ, РАЗБИТЫХ НА КЛАСТЕРЫ НЕРАВНОГО
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Аннотация. В данной статье рассматривается задача поиска кратчайших путей между всеми парами
вершин ориентированного взвешенного разреженного графа, который разбит на кластеры путем нахождения
плотных слабосвязных подграфов. Мы решаем эту задачу, разрабатывая новые блочные алгоритмы, которые
описывают кратчайшие пути матрицами блоков неравных размеров, соответствующих размерам кластеров
графа. Эти алгоритмы расширяют возможности известных существующих алгоритмов, использующих блоки
одинакового размера (таких как блочный алгоритм Флойда-Уоршелла) в части адекватного моделирования
графов реальных сетей различного назначения, а также в части эффективного использования параллелизма и
вычислительных ресурсов многопроцессорных систем и многоядерных процессоров. Предлагаемый в
данной статье блочный алгоритм поиска кратчайших путей в разреженных графах большого размера,
разбитых на кластеры, позволяет, с одной стороны, сократить объем используемой памяти, а с другой –
уменьшить количество пересчетов блоков. Диагональные блоки описывают кратчайшие пути внутри
кластеров, недиагональные блоки описывают немногочисленные взвешенные дуги, соединяющие кластеры.
Кратчайшие пути между вершинами разных кластеров вычисляются в реальном времени. Потребление
памяти по сравнению с алгоритмами семейства Флойда-Уоршелла уменьшается в число раз, равное
количеству кластеров. Чтобы уменьшить количество пересчетов блоков, нами предложена новая операция,
позволяющая точно вычислить кратчайшие пути между вершинами одного кластера, проходящие через
вершины и ребра другого кластера, а также через ребра, соединяющие кластеры. Применение только этой
операции позволяет построить алгоритмы, которые находят решения, вносящие небольшую ошибку
(несколько процентов) в длины кратчайших путей при малых весах ребер между кластерами, и позволяет
находить точные решения при увеличении весов этих ребер. Точные решения могут быть получены для
разреженных графов, моделирующих дорожные, компьютерные и другие сети.

Ключевые слова: разреженный граф, кластер, кратчайшие пути, блочный алгоритм, блоки неравного
размера, разнородная система.


