УДК 612.087.1

ПРОГРАММНЫЙ МОДУЛЬ ОБРАБОТКИ ШУМОПОДОБНЫХ БИОМЕДИЦИНСКИХ СИГНАЛОВ НА ОСНОВЕ КОРРЕЛОГРАММЫ

Малицкий В.А.

Младший научный сотрудник НИЧ
БГУИР,
магистрант,
vsevolod.malitskiy@
gmail.com

Осипов А.Н.
Заведующий
лабораторией НИЧ
БГУИР,
доцент,к.т.н.,
osipov@bsuir.by

Клюев А.П.
Старший
преподаватель
кафедры ИПиЭ
БГУИР
kluev@bsuir.by

Тяньбо Ма Аспирант БГУИР 714922741@gq.com

В.А.Малицкий

Работает в Белорусском государственном университете информатики и радиоэлектроники. Область научных интересов – цифровая обработка биомедицинских сигналов.

А.Н.Осипов

Работает в Белорусском государственном университете информатики и радиоэлектроники. Область научных интересов – биомедицинская инженерия.

А.П.Клюев

Работает в Белорусском государственном университете информатики и радиоэлектроники. Область научных интересов – системы с биологической обратной связью.

Тяньбо Ма

Учится в Белорусском государственном университете информатики и радиоэлектроники. Область научных интересов – биомедицинская инженерия.

Аннотация. В данной статье приведено описание и алгоритм работы программного модуля на основе метода корреляционного анализа, разработанного при помощи пакета прикладных программ *MatLab* для исследования шумоподобных биомедицинских сигналов.

Ключевые слова. Корреляционный анализ, коррелограмма, коэффициент корреляции, массив данных.

Введение. Для расчета значимых параметров биосигналов традиционно используют широкий спектр методов: от статистического и анализа гистограмм распределения до спектрального анализа и нелинейных методов [1]. Для анализа шумоподобных сигналов традиционно используется частотно-временное преобразование [2]. В данной статье для этих целей предлагается использовать метод, основанный на вычислении коррелограмм.

Программный модуль. Программный модуль, созданный с помощью пакета прикладных программ *MatLab*, осуществляет анализ данных последовательностей двух сигналов на основе корреляционного анализа. Корреляционный анализ – статистический метод изучения взаимосвязи между двумя и более последовательностями [3]. Программный модуль осуществляет расчёт коэффициентов корреляции в зависимости от

размера выборки (окна), а затем, по вычисленным данным, выполнятся построение коррелограммы. Данный процесс осуществляется в несколько этапов.

На первом этапе загружаются последовательности исследуемых сигналов, записанных в формате .txt файлов, в среду MatLab для их обработки. Благодаря встроенной функции данные из .txt файлов записываются в отдельные массивы. Сами массивы состоят из одинакового кол-ва элементов N. При различных длинах сигналов пользователю следует сократить более длинный массив до размера меньшего массива, либо дополнить меньший массив нулями до размеров большего. В программе предусмотрена возможность смещения данных в массивах, благодаря которой выбирается наиболее интересующий участок сигналов для исследования.

На втором этапе задаётся размер окна M (количество отсчётов), который влияет на разрешающую способность. Выборка окон производится последовательно без перекрытия и не включают в себя элементы предыдущего окна. Размер окна и их количество K определяются в соответствии с выражением K = N/M.

Следует отметить, что число окон K должно быть целым. Следовательно, в ситуациях получения нецелого значения K изменяется размер окна, дополняются или сокращаются массивы. В предлагаемой программе избыточные элементы исключаются и далее не используются. Это целесообразно до момента, пока количество отбрасываемых элементов не превышает половину размера окна.

На третьем этапе выполняется расчёт коэффициентов корреляции в каждом окне и запись данных в двумерный массив. Общая формула вычисления коэффициентов корреляции $r_{12}(n)$ двух исследуемых последовательностей сигналов $x_1(n)$ и $x_2(n)$, содержащих по N элементов, определяется как:

$$r_{12}(j) = \frac{1}{N} \sum_{n=0}^{N-1} x_1(n) x_2(n+j), \tag{1}$$

где j — величина сдвига или интервал, на который $x_2(n)$ смещается относительно $x_1(n)$.

В рассматриваемом случае j=1,2,..., М относительно первого элемента $x_1(n)$, а общее кол-во сдвигов $x_2(n)$ в окне равно размеру окна. Сдвиг выполняется внутри окна и не затрагивает значения вне этого окна. Последнее значение в этом промежутке на следующей итерации становится первым в этой последовательности.

Рассчитанные коэффициенты корреляции записываются в двумерный массив. В данном двумерном массиве кол-во строк соответствует размеру окна, а количество столбцов — количеству окон. Данный формат удобен для последующей обработки специальными функциями *MatLab*. В программе имеется возможность изменения размерности массива и обработки его не как матрицы, а как строчки с последовательной записью результатов расчёта.

На четвертом этапе, применяя функцию pcolor, выполняется построение графика коррелограммы. Вдоль оси X откладываются номера окон, вдоль оси Y – сдвиг в окнах, а значение корреляционного коэффициента отображается насыщенностью цвета.

Стоит упомянуть о нормировании сигнала. При использовании функции *pcolor* и других встроенных функциях максимальная и минимальная интенсивность цвета определяется по максимальному и минимальному значению коэффициентов корреляции автоматически. Она может быть необходима для более удобной оценки количественных данных человеком.

Заключение. Таким образом в данной статье приводится описание разработанного авторами программного модуля вычисления коррелограммы для обработки шумоподобных биомедицинских сигналов. Поэтапно описано функционирование данного

модуля, с необходимыми пояснениями его особенностей. Результаты работы могут быть использованы при проектировании медицинской диагностической аппаратуры.

Список литературы

- [1] Биомедицинские сигналы и изображения в цифровом здравоохранении: хранение, обработка и анализ: учебное пособие / В.С. Кубланов, А.Ю. Долганов, В.Б. Костоусов [и др.]; [под общ. ред. В. С. Кубланова]; Мин-во науки и высш. образования РФ. Екатеринбург: Изд-во Урал. ун-та, 2020.— 240 с.
- [2] Меженная, М. М. Аппаратно-программные средства электростимуляции опорно-двигательного аппарата человека на основе частотно-временного анализа биоэлектрической активности мышц: автореф. дисс. ... кандидата технических наук: 05.11.17 / Меженная М. М.; науч. рук. А. Н. Осипов. Минск: БГУИР, 2012. 22 с
- [3] Корреляционный анализ [Электронный ресурс] / Режим доступа https://www.statmethods.ru/statistics-metody/korrelyatsionnyj-analiz/ 25.01.2024

Авторский вклад

Авторы внесли равноценный вклад.

A SOFTWARE MODULE FOR PROCESSING NOISE-LIKE BIOMEDICAL SIGNALS BASED ON A CORRELOGRAM

Malitskiy V.A.	Osipov A.N.	Klyuev A.P.	Tianbao Ma
Junior Researcher of	Head of the laboratory	Senior lecturer of the	Graduate student of
the BSUIR Research	of the BSUIR Research	Department of IPiE	BSUIR
Institute, master's	Institute, Associate	BSUIR	
student,	Professor, PhD.,		

Annotation. This article describes and describes the algorithm of the software module based on the correlation analysis method developed using the MatLab application software package for the study of noise-like biomedical signals.

Keywords. Correlation analysis, correlogram, correlation coefficient, data array.