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Abstract—This article proposes an algorithm for au-
tomating the process of medical ultrasound diagnostics
using intelligent analysis. The actions are described using
the example of a thyroid gland study. Additional verification
of the result by the artificial intelligence allows novice
doctors to feel more confident and minimize the influence
of the human factor on the quality of diagnosis.
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I. Introduction
Currently, thyroid problems are widespread in the

population of the Republic of Belarus. This is due to the
disaster at the Chernobyl nuclear power plant in 1986.
The Gomel and Mogilev regions of the country were
the most affected. In the first 10 days after the accident,
the concentration of radioactive iodine was increased in
some territories of the republic, which led to an increase
in cases of thyroid pathology.

According to the Ministry of Health for 2021, 3.8%
of the population of Belarus has pathology of this organ.
There is an increase in the incidence every year.

Therefore, improving the technique of ultrasound di-
agnostics of thyroid pathologies is an urgent issue of our
time.

Neural networks are gaining more and more popularity.
They are often used in medical diagnostics. For example,
to process test results, improve the quality of magnetic
resonance imaging, analyze large amounts of data, and
even perform surgical interventions.

By connecting artificial intelligence to the research, it
is possible to reduce the influence of the human factor
on the quality of the diagnosis. The result of ultrasound
often depends on the doctor’s experience. After all, this
type of diagnosis involves processing the results directly
at the time of the study. In this regard, there remains a
high risk of missing an important feature of the organ
structure.

II. Domain analysis
Diagnostic ultrasound is a safe, non-invasive diagnos-

tic technique used to image inside the body. Ultrasound

Figure 1. Thyroid gland scheme [1]

probes, called transducers, produce sound waves that
have frequencies above the threshold of human hearing
(above 20KHz), but most transducers in current use
operate at much higher frequencies (in the megahertz
(MHz) range).

Ultrasound waves are produced by a transducer, which
can both emit ultrasound waves, as well as detect the
ultrasound echoes reflected back. In most cases, the
active elements in ultrasound transducers are made of
special ceramic crystal materials called piezoelectrics.
These materials are able to produce sound waves when
an electric field is applied to them, but can also work
in reverse, producing an electric field when a sound
wave hits them. When used in an ultrasound scanner, the
transducer sends out a beam of sound waves into the body.
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The sound waves are reflected back to the transducer
by boundaries between tissues in the path of the beam
(e.g. the boundary between fluid and soft tissue or tissue
and bone). When these echoes hit the transducer, they
generate electrical signals that are sent to the ultrasound
scanner. Using the speed of sound and the time of each
echo’s return, the scanner calculates the distance from
the transducer to the tissue boundary. These distances are
then used to generate two-dimensional images of tissues
and organs.

Figure 2. Ultrasound system scheme [2]

During an ultrasound exam, the technician will apply
a gel to the skin. This keeps air pockets from forming
between the transducer and the skin, which can block
ultrasound waves from passing into the body. [3]

Ultrasound is a method of shadows. This study does
not show a volumetric model of human organs, however,
it allows to estimate the size, volume, density, correct
location of the organ relative to the entire body, the
presence of fluid in the area under study, as well as
cysts, tumors and other formations. Moreover, minimally
invasive operations are also performed under the control
of an ultrasonic sensor. This allows the doctor to monitor
the progress of the study without having to make large
incisions on the human body.

During the ultrasound examination, the signal passes
through the tissues of the human body and returns
back. Solid dense organs reflect the sound signal well.
Therefore, areas such as bones and stones look white on
ultrasound.

Internal organs and soft tissues are usually represented
by different shades of gray depending on the density of
the organ.

Voids and liquid are shown in black on the screen,
because in this case there are no obstacles in the signal
path, and therefore it is practically not reflected at all.

Depending on the diagnostic areas, different types of
sensors are used. The linear sensor has a rectangular

image. The 2D sensor has a wide aperture, and its central
frequency is in the range of 2.5-12 MHz (3D-4D is in the
range of 7.5-11 MHz). Piezoelectric crystals in a linear
sensor are located in the same plane, so such a sensor
provides good visibility at close range. It is used for ultra-
sound of blood vessels, muscles, performing anesthesia
under ultrasound control, examining mammary glands,
thyroid gland and other superficial organs.

Figure 3. An example of an ultrasound made by a linear sensor [4]

In a convex sensor, piezoelectric crystals are arranged
curvilinearly. Therefore, such a sensor visualizes deeply
located structures well. The convexic 2D sensor has a
wide aperture, and its central frequency is 2.5-7.5 MHz
(3D, 4D— 3.5-6.5 MHz). With its help, ultrasound of the
fetus, pelvic organs, and abdominal cavity is performed.

The sector phased array sensor is so named after the
type of piezoelectric element device, which is called
a phased array. The phased array sensor has a small
aperture and a low frequency (the central frequency is
2-7.5 MHz). The shape of the scanning area is almost
triangular. These sensors have poor resolution in the near
field but give a good view at depth. They allow to observe
structures through a narrow intercostal gap. With its help,
ultrasound of the heart, abdominal organs, and brain is
performed.

For ultrasound diagnosis of the thyroid gland, only a
linear sensor is often used. However, it is possible to see
a trapezoidal image on the screen of the device. This is
due to the fact that the linear sensor has the function of
a virtual convection, which allows to make the viewing
plane wider and accommodate the entire organ there.

The convex sensor is used only when the thyroid gland
is enlarged and the patient’s body weight is too large.

Also ultrasound information can be displayed in sev-
eral ways:

A-mode: As spikes on a graph (used to scan the eye).
B-mode: As a 2-dimensional anatomic images (used

during pregnancy to evaluate the developing fetus or to
evaluate internal organs).
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Figure 4. An example of an ultrasound made by a linear sensor with
virtual convex mode [5]

M-mode: As waves displayed continuously to show
moving structures (used to evaluate the fetus’s heartbeat
or to evaluate heart valve disorders).

B-mode ultrasonography is most commonly done.
Sonography can be enhanced with Doppler mea-

surements, which employ the Doppler effect to assess
whether structures (usually blood) are moving towards
or away from the probe, and its relative velocity. By
calculating the frequency shift of a particular sample
volume, for example a jet of blood flow over a heart
valve, its speed and direction can be determined and
visualised. This is particularly useful in cardiovascular
studies (sonography of the vasculature system and heart)
and essential in many areas such as determining reverse
blood flow in the liver vasculature in portal hypertension.
The Doppler information is displayed graphically using
spectral Doppler, or as an image using color Doppler
(directional Doppler) or power Doppler (non directional
Doppler). This Doppler shift falls in the audible range
and is often presented audibly using stereo speakers: this
produces a very distinctive, although synthetic, pulsing
sound.

Doppler ultrasonography uses changes that occur in
the frequency of sound waves when they are reflected
from a moving object (called the Doppler effect). In
medical imaging, the moving objects are red blood cells
in the blood. Thus, Doppler ultrasonography can be used
to evaluate.

It is used to evaluate how well the heart is functioning
(as part of echocardiography), to detect blocked blood
vessels, especially in leg veins, as in deep vein thrombo-
sis, when veins are blocked by a blood clot. To detect
narrowed arteries, especially the carotid arteries in the
neck, which carry blood to the brain.

Strictly speaking, most modern sonographic machines
do not use the Doppler effect to measure velocity, as
they rely on pulsed wave Doppler (PW). Pulsed wave

machines transmit pulses of ultrasound, and then switch
to receive mode. As such, the reflected pulse that they re-
ceive is not subject to a frequency shift, as the insonation
is not continuous. However, by making several measure-
ments, the phase change in subsequent measurements can
be used to obtain the frequency shift (since frequency is
the rate of change of phase). To obtain the phase shift
between the received and transmitted signals, one of two
algorithms is typically used: the Kasai algorithm or cross-
correlation. Older machines, that use continuous wave
(CW) Doppler, exhibit the Doppler effect as described
above. To do this, they must have separate transmission
and reception transducers. The major drawback of CW
machines, is that no distance information can be obtained
(this is the major advantage of PW systems - the time
between the transmitted and received pulses can be
converted into a distance with knowledge of the speed
of sound).

In the sonographic community (although not in the sig-
nal processing community), the terminology "Doppler"
ultrasound, has been accepted to apply to both PW and
CW Doppler systems despite the different mechanisms
by which the velocity is measured.

Spectral Doppler ultrasonography shows blood flow
information as a graph. It can be used to assess how
much of a blood vessel is blocked.

Figure 5. An example of thyroid dopplerography [6]

III. Overview of existing approaches
There are already a lot of scientific articles on the pro-

cessing of ultrasound results using artificial intelligence.
Some of them are even applied in practice. Moreover,
there is a S-Detect (Samsung RS80A ultrasound system,
Seoul, Korea). It is the first commercially available
ultrasound CAD based on deep learning technology for
thyroid imaging. [7]

S-Detect is a computer-aided detection (CAD) soft-
ware developed by Samsung Electronics for use with
their RS80A ultrasound system. It is designed to assist
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radiologists and clinicians in the detection and character-
ization of breast lesions during ultrasound examinations.

Figure 6. An example of Samsung S-Detect-system interface [8]

This system has a lot of pros: it provides real-time feed-
back to the clinician during the examination, enabling
immediate assessment and decision-making regarding
lesion characterization and management. More than that,
the software provides standardized reporting templates
that facilitate structured documentation of lesion charac-
teristics, including malignancy probability scores and rec-
ommended management options. This promotes consis-
tency and completeness in reporting. S-Detect seamlessly
integrates with the RS80A ultrasound system’s workflow,
allowing for efficient and streamlined use within clinical
practice. It is user-friendly and does not significantly
disrupt the examination process.

But S-Detect is primarily designed for breast lesion
characterization and may not be suitable for other types
of lesions or organs. Its utility is limited to breast
ultrasound examinations and may not address the full
spectrum of diagnostic challenges encountered in clini-
cal practice. While S-Detect is user-friendly, clinicians
may require some time to familiarize themselves with
the software’s features and functionality. Training and
ongoing education may be necessary to optimize its
use and interpretation. Moreover, The implementation
of S-Detect may incur additional costs associated with
software licensing, training, and maintenance. Clinics
and healthcare facilities must consider the financial im-
plications before adopting the technology.

There are another people who have been automating
ultrasound diagnostics of the thyroid gland using arti-
ficial intelligence. For example in 2021 scientists from
Romania published their article "Intelligent Diagnosis of
Thyroid Ultrasound Imaging Using an Ensemble of Deep
Learning Methods".

They developed a CNN-VGG ensemble fused from two
models: a pre-trained fined tuned model VGG-19 and an
efficient lightweight CNN model. The proposed ensemble
method proved to be an excellent and stable classifier
with a good performance in terms of overall sensitivity
(95.75%), specificity (98.43%), accuracy (97.35%), AUC

(0.96), positive predictive value (95.41%) and negative
predictive value (98.05%). [9]

Also there are scientists from China who published an
"Artificial intelligence in thyroid ultrasound" article in
2023. Their research is more focused on the prevention
and early detection of the thyroid cancer. They also used
deep learning algorithms to achieve this goal. They tests
different types of DL-based neural networks. [7]

The research of the above-mentioned scientists has
been very successful. Their authors placed great empha-
sis on training the neural network to make diagnoses and
look for pathology in ultrasound diagnostic images.

In the current work, a simpler and more global
approach is considered: the neural network does not
diagnose, but only assists the doctor. Their joint work
makes it possible to minimize the errors of both the
doctor and the software. The approach is described using
the example of thyroid gland examination, but it can also
be used in ultrasound diagnostics of other organs.

Also in this article, it is proposed to analyze not
individual images, but a video recording of the entire
research process.

Based on the approach described below, it is planned
to develop a software product in the future and implement
it into the work of a medical institution in a test mode.

Also, in the future, it is planned to develop the idea
in such a way as to process not the final product of
the work of some software: a visual representation of
the ultrasound process, but the initial product, that is,
ultrasonic signals. This will make the processing process
faster.

IV. Proposed approach
Currently, artificial intelligence has been used in

medicine for a long time. Integrating artificial intelli-
gence into the ultrasound diagnostic process is not the
easiest task. After all, software needs time to analyze.
Many studies allow to process the result later: for exam-
ple, MRI, X-ray and others. But a standard ultrasound
examination involves the interpretation of the result by a
doctor right at the time of the study. In this regard, the
quality of the study directly depends on the experience
and attentiveness of the doctor.

To do intelligent processing of MRI results, it is
enough to simply install the appropriate program on your
computer. Because the MRI is first fully performed and
then interpreted. And due to the fact that the ultrasound
examination is simultaneously performed and interpreted,
a third-party computer is rarely used by a doctor for it.
But connecting the software directly to the ultrasound
machine is almost impossible, for two reasons. Firstly,
devices from different manufacturers with different soft-
ware are used for diagnostics, which is written in low-
level languages and can be difficult to integrate with
other more modern technologies. Secondly, as mentioned
earlier, the software needs time to process the data.
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After numerous consultations with specialists in the
medical field, analyzing the situation and finding the best
way to introduce artificial intelligence into the ultrasound
diagnostic process, it was decided to record the research
process in a video format file. Then the data is transferred
to the computer. The video is divided into frames of
0.5 seconds of research. It is this time interval that will
allow not to process the same images several times, but
at the same time not to miss important changes. The
frames are then processed by a neural network. At the
end of processing, the software generates its own, it
will highlight a suspicious area and comment on it. In
this case, the doctor can either ignore the prompts of
artificial intelligence, if he has already paid attention to
this pathology, or put a sensor and review the moment
of interest again.

Training a neural network for the automated analysis
of thyroid gland ultrasonography images involves several
key steps.

The first step is to gather a large dataset of thyroid ul-
trasound images. These images should cover a wide range
of thyroid conditions, including cysts, tumors, nodules,
and other pathologies. The dataset should be diverse and
representative of the population being analyzed.

Once the dataset is collected, it needs to be pre-
processed to ensure consistency and quality. This may
involve resizing the images, standardizing the brightness
and contrast, and removing noise or artifacts. Each image
in the dataset needs to be labeled with the corresponding
thyroid pathology, such as cyst, tumor, or normal. This
step is crucial for supervised learning, where the neural
network learns from labeled examples.

Then it is need to choose an appropriate neural
network architecture for the task. Convolutional Neural
Networks (CNNs) are commonly used for image clas-
sification tasks due to their ability to capture spatial
hierarchies in data.

A Convolutional Neural Network (CNN) is a type
of deep learning algorithm specifically designed for
processing and analyzing visual data, such as images. It
is inspired by the structure and function of the human
visual cortex and is well-suited for tasks such as image
classification, object detection, and image segmentation.

CNNs can not only classify images but also localize
the regions within the image that contain abnormalities.
This is crucial in medical imaging tasks, as it allows
clinicians to pinpoint the location of cysts or tumors
within the thyroid gland. CNNs can be trained to output
bounding boxes or segmentation masks that delineate the
boundaries of detected abnormalities.

CNNs consist of multiple layers, including convolu-
tional layers, pooling layers, and fully connected layers.

Convolutional layers are the building blocks of CNNs.
They apply convolution operations to input images, using
learnable filters (also called kernels) to extract features

Figure 7. Overview and details of a convolutional neural network
(CNN) architecture for image recognition [10]

such as edges, textures, and patterns. These filters slide
over the input image, computing dot products between
the filter weights and the input pixels to produce feature
maps. Multiple filters are used in each convolutional layer
to capture different features.

Pooling layers downsample the feature maps produced
by the convolutional layers, reducing their spatial dimen-
sions while retaining the most important information.
The most common type of pooling operation is max
pooling, where the maximum value within each region
of the feature map is retained, effectively reducing the
size of the feature maps.

Fully connected layers, also known as dense layers, are
traditional neural network layers where every neuron is
connected to every neuron in the previous and subsequent
layers. These layers are typically used at the end of the
CNN to map the extracted features to the output classes
or labels.

As for the size of the training sample, it depends on
various factors such as the complexity of the task, the
diversity of the dataset, and the chosen neural network ar-
chitecture. In general, larger datasets tend to yield better-
performing models, especially for deep learning tasks.
However, the minimum size of the training sample re-
quired for effective model training can vary significantly
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depending on the specific problem being addressed. It
is essential to strike a balance between dataset size,
computational resources, and model performance when
designing the training pipeline. In the case of medical
imaging tasks like thyroid ultrasound analysis, larger
datasets with thousands to tens of thousands of labeled
images are typically required to train accurate and robust
models.

NNs can be trained effectively even with limited
labeled data by employing data augmentation techniques.
These techniques involve applying transformations such
as rotation, scaling, flipping, and cropping to the input
images, thereby augmenting the training dataset and
improving the model’s generalization ability.

Pre-trained CNN models, which have been trained
on large-scale datasets such as ImageNet, can be fine-
tuned for medical image analysis tasks with relatively
small datasets. By leveraging the feature representations
learned from generic image data, transfer learning en-
ables CNNs to achieve better performance and faster
convergence when applied to medical image datasets,
including thyroid ultrasound images.

CNNs can provide insights into the decision-making
process by generating heatmaps or saliency maps that
highlight the regions of the image that contribute most
to the model’s predictions. This interpretability is valu-
able for clinicians, as it helps them understand why a
particular diagnosis or classification was made by the
CNN.

In summary, Convolutional Neural Networks offer
powerful capabilities for automatically detecting and lo-
calizing cysts, tumors, and other abnormalities on thyroid
ultrasound images. By learning complex patterns and
structures from labeled data, CNNs can assist radiologists
and clinicians in diagnosing thyroid pathologies more
accurately and efficiently, leading to improved patient
outcomes.

The expected result of the implementation of the
approach should be a web application with artificial
intelligence inside. Between the desktop and the web
application, the choice fell on the second option. This
is due to the fact that the neural network is able to
independently learn additionally in the course of its work.
To do this, she needs to have access to the results of
working with the application of other users. It is more
convenient to do this in a web format. It is also necessary
to be able to refine the application. By updating web
applications, the added changes will quickly appear to
all users, unlike the desktop application, where each user
will have to update it.

V. Overcoming obstacles

However, there are some serious pitfalls here.
With the web approach, a single server will have

access to all application data. This violates the privacy

policy and the protection of the user’s personal data. The
solution to this problem was found in having a separate
server for each medical facility. And also not to transfer
user data to the application. Based on the specifics of this
software, it can process anonymous data and this will not
affect the result.

The second difficulty encountered along the way is the
presence of artifacts in the research process. The neural
network must learn how to process them.

Artifacts in ultrasonic diagnostic imaging refer to mis-
leading features or distortions present in the ultrasound
image that do not accurately represent the anatomical
structures being examined. These artifacts can arise
due to various factors, including the properties of the
ultrasound beam, the interaction of ultrasound waves
with tissues, equipment settings, patient characteristics,
and operator technique. Understanding and mitigating
artifacts are essential for ensuring the accuracy and
reliability of ultrasound diagnoses.

There are different types of artifacts. Reverberation
Artifacts occurs when sound waves bounce back and
forth between two strong reflectors, creating multiple,
evenly spaced echoes on the image. It can give the
appearance of additional structures or false boundaries
within tissues.

Shadowing occurs when sound waves are attenuated
by highly reflective or dense structures, resulting in a
hypoechoic or anechoic region behind the structure. This
can obscure underlying structures and limit visualization.

Edge artifacts occur at the interfaces between tissues
with different acoustic properties. They manifest as bright
or dark lines along tissue boundaries and can distort the
appearance of adjacent structures.

Noise in ultrasound images can result from electronic
interference, acoustic reverberations, or random fluctua-
tions in signal intensity. It can degrade image quality and
reduce diagnostic accuracy.

Motion artifacts occur when there is movement of the
patient or probe during image acquisition. This can lead
to blurring or ghosting of structures and compromise
image clarity.

Teaching a CNN to process artifacts in ultrasound
images is not an easy task. But there are some ways
to overcome it.

Adversarial training involves training the CNN simulta-
neously with a generator network that generates realistic
artifacts and a discriminator network that distinguishes
between real images and artifacts. This helps the CNN
learn to discriminate between artifacts and true struc-
tures.

Constructing a dataset that includes annotated exam-
ples of various artifacts encountered in clinical practice
can facilitate CNN training. Annotating images to iden-
tify regions affected by artifacts allows the CNN to learn
to ignore or compensate for them during analysis.
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Pre-trained CNN models trained on general image
datasets can be fine-tuned using ultrasound images con-
taining artifacts. By leveraging the feature representations
learned from diverse datasets, transfer learning enables
the CNN to adapt to artifact-rich ultrasound images more
effectively.

By training CNNs to recognize and process artifacts
in ultrasound images, it can enhance the robustness and
reliability of automated diagnostic systems, ultimately
improving patient care and outcomes in ultrasonic diag-
nostic imaging.

Another difficulty is the structure of the organ itself.
Although the thyroid gland was chosen as an example
for research in this article as one of the easiest organs
to analyze, it has its own characteristics. The thyroid
gland consists of lobes. On both sides of the organ there
are carotid arteries, in which there is an active blood
flow, sometimes it looks pulsating on ultrasound. This
may prevent the neural network from performing a high-
quality analysis. Moreover, in the middle of the organ
is the larynx, which also needs to be distinguished from
pathology.

However, the thyroid gland is still an easy organ to
diagnose. In comparison, for example, with abdominal
organs, thyroid ultrasound rarely shows a nebula asso-
ciated with a large amount of subcutaneous fat in the
patient.

Figure 8. Thyroid gland ultrasonography example [11]

Due to the fact that every person has a larynx and
carotid arteries, the neural network will learn to isolate
them and accept them as normal thanks to a large training
sample.

In the picture 6, the round blackouts on the sides of
the thyroid gland are the carotid arteries. And the round
gray area in the middle is the larynx.

VI. OSTIS Technology integration
Working with artificial intelligence is not limited to

neural networks alone. One of the strong representatives

Figure 9. Thyroid gland ultrasonography in longitudinal projection
example [12]

of symbolic artificial intelligence is OSTIS Technology.
[13]

By integrating this technology into the described
project, the following results can be achieved:

1) Thanks to the implementation of OSTIS, it is
possible to additionally train the neural network not only
on ongoing research, but also on feedback from medical
experts.

2) An intelligent assistant system can be integrated
into the application, which will determine not only the
presence or absence of pathology, but will also be able
to analyze the general state of the patient’s health and
draw conclusions about what a particular problem in the
body is related to.

3) The treatment regimen for some pathologies is
described by protocols and is similar in different patients.
Thus, the system integrated with OSTIS will be able not
only to check for problems in the organ, but also to offer
appropriate treatment. Thus, the doctor will not have to
write it himself. It will only be enough to edit a ready-
made treatment regimen.

4) OSTIS is based on a knowledge base. Therefore, the
system takes all the information from there and draws
conclusions based on it. Although neural networks are
a fairly productive tool, they have a large percentage
of error. OSTIS will help to minimize the number of
incorrect answers and reduce the reliability of the system
analysis to 99%.

VII. Conclusion
Medical ultrasonography, a widely-used diagnostic

imaging modality, plays a pivotal role in healthcare by
providing real-time images of internal organs and tissues.
However, the manual interpretation of ultrasound images
can be challenging and time-consuming, often requir-
ing specialized expertise. In recent years, significant
advancements in artificial intelligence (AI) and image
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analysis techniques have revolutionized medical imaging,
paving the way for the automation of ultrasonography
interpretation through intelligent image analysis.

This article provides a comprehensive overview of the
application of AI in medical ultrasonography and its
potential to enhance diagnostic accuracy, efficiency, and
patient care. It proposes one of the solutions which can
help to minimize the number of errors associated with the
human factor. After all, an ultrasound diagnostic doctor
should be extremely attentive and focused throughout the
entire work shift. However, the study may take place
at night, the person may be in poor health, there may
be too many patients, the doctor may not have enough
experience. These factors directly affect the quality of the
study and the timeliness of diagnosis of life-threatening
pathologies.

At the moment, artificial intelligence is rarely used on
a large scale due to the fact that it cannot completely
replace humans. Especially in such an area as medicine.
This sphere doesn’t forgive mistakes. The option pro-
posed here is a compromise between using only artificial
intelligence and only human power.

The article describes an algorithm for creating an
intelligent system for determining thyroid pathologies
using image analysis. During the work, the advantages
and disadvantages of this approach were considered, and
options for overcoming the difficulties that will have to
be faced during the implementation of the project were
proposed. The subject area was also analyzed, the process
of ultrasound examination, the principle of operation of
the ultrasound machine were described. Moreover, an
analysis of existing publications and projects on related
topics was carried out.

Integration of the system with OSTIS technology was
also proposed.

The automation of medical ultrasonography through
intelligent image analysis holds great promise for im-
proving diagnostic accuracy, efficiency, and patient out-
comes. By harnessing the power of AI and deep learning
techniques, clinicians can leverage advanced tools to
enhance their diagnostic capabilities and provide better
patient care. However, further research, validation, and
collaboration between clinicians, researchers, and tech-
nologists are essential to overcome challenges and realize
the full potential of AI-driven automatization in medical
imaging.
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АВТОМАТИЗАЦИЯ
УЛЬТРАЗВУКОВОГО

ИССЛЕДОВАНИЯЩИТОВИДНОЙ
ЖЕЛЕЗЫ С ПОМОЩЬЮ

ИНТЕЛЛЕКТУАЛЬНОГО АНАЛИЗА
Черкас Е. О.

Эта статья предлагает алгоритм автоматизации про-
цесса медицинской ультразвуковой диагностики с по-
мощью интеллектуального анализа. Действия описаны
на примере исследования щитовидной железы. Допол-
нительная проверка результата со стороны нейронной
сети позволяет начинающим докторам чувствовать
себя более уверенно и минимизировать влияние чело-
веческого фактора на качество диагностики.
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