
Neural Network Technology for Real-Time IT
Service Management

Viktor Krasnoproshin
Faculty of Applied Mathematics

and Computer Science
Belarussian State University

Minsk, Belarus
Email: krasnoproshin@bsu.by

Aleksandr Starovoitov
Faculty of Applied Mathematics

and Computer Science
Belarussian State University

Minsk, Belarus
Email: StarovoytovAA@bsu.by

Abstract—The paper explores a relevant applied problem
related to building decision-making systems for resource
management of critical IT services. The uncertainty of
external load is an important factor that affects operational
management. Neural network forecasting is used to improve
control systems. A model system of a critical IT service is
described, an original technology, structure and architec-
ture of the control system are proposed. Experiments have
been conducted to confirm the workability of the proposed
technology.

Keywords—decision-making, information system, proac-
tive management, uncertainty of external load, neural
networks, critical IT service

I. Introduction

Support for computing systems in critical infrastruc-
tures (such as banking, telecommunications, industrial
systems) in an operational state (with guaranteed compu-
tational resource levels) is a relevant problem in today’s
digital society.

Uncertainty in external loads and outages of comput-
ing equipment lead to operational failures and perfor-
mance degradations of critical IT systems. As a result,
the loss of operational efficiency in processing informa-
tion and conducting banking and other operations can
have serious consequences, including financial losses and
major incidents.

Making operational decisions for the management of
critical IT services allows for the reduction or prevention
of negative consequences. However, the human factor
often contributes to a decrease in operational efficiency.
Therefore, various automated solutions are actively being
developed to enhance efficiency and proactivity in the
management of critical systems.

In laboratory conditions, it is difficult to develop rele-
vant systems (without interacting with the critical infras-
tructure itself). Therefore, one of the current problems is
the creation of model systems that enable researchers to
use them for the development of proactive management
systems for critical IT services.

Several authors develop various management systems
for critical IT services using neural network models,

which contribute to efficient decision-making [1]–[4].
However, in these systems, only one neural network
model is trained for specific types of external load. It
is assumed that these models will successfully forecast
the values of necessary parameters for other types of
load associated with uncertainty. In these works, training
datasets are prepared in advance, containing long time
series with a large number of elements. Training on such
datasets takes a considerable amount of time and requires
high-performance resources (GPU, TPU) to effectively
train models within an acceptable timeframe.

This paper considers the construction of a model sys-
tem conceptually corresponding to a critical IT service
and an operational management system with a neural
module.

A multi-model approach is used, based on the idea
that the managed IT system can be in various states
(in terms of computational resource volume), and for
each state during its existence, a neural network model
can be created and trained to predict the average %CPU
utilization across computational modules.

A combined management system is used, in which the
control decision for state changes is formed based on
both reactive and proactive approaches.

II. Critical IT Service: Conceptual Model

Let’s consider the conceptual model of a critical in-
formation system, which describes its basic elements and
significant parameters. It can be described in the form of
the following tuple:

System = (Clients ∪ Balancers ∪ APPs ∪ DBs,Links),
(1)

where
Clients = {Clienti} — the set of system clients. These

can be both user devices and other external systems;
Balancers = {Balancersj} — the set of balancers

that distribute requests from clients and external systems
across services. Services within the system can also
communicate with each other through balancers;

255



APPs = {APPk} – the set of application services
within the system;

DBs = {DBl} — the databases of the system (can be
of any type);

Links = {Linkm} — the set of bidirectional temporal
links that arise during communication between elements
of the system;

The elements Clienti, Balancersj , APPk, DBl, Linkm
can also be represented as tuples:

Clienti = (Protocoli, Profilei), where Protocoli defines
the specification, and Profilei represents the interaction
profile (requests, their parameters, frequency, etc.) for the
ith client;

Balancersj = (Protocolj ,RPSj ,Throughputj), where
RPSj is the number of requests per second, and
Throughputj is the throughput (Mbps) for the jth bal-
ancer. It is assumed that the balancer supports all in-
teraction protocols, and the delay on the balancer is
insignificant compared to the response time;

APPk = (Compute_Modulesk,Soft_Servicek) the
set of instances of application software, where
Compute_Modulesk is the set of computational modules,
and Soft_Servicek is the type of application service used
on the computational modules Compute_Modulesk;

DBl = (Compute_Modulesl,Soft_Service_DBl) —
describes a set of database instances serving
one type of application service instances, where
Compute_Modulesl is the set of computational modules,
and Soft_Service_DBl is the type of database software
used in the computational modules Compute_Modulesl.
These can be any (not necessarily relational) databases;

Linkm = {(Pmn, Pmo)} — the set of bidirectional
temporal links between elements of the system, estab-
lished through communication via specific open ports;

Compute_Modules = {Compute_Modulec} — the set
of computational modules of the system, where each
computational module can also be described by the
following tuple:

Compute_Module = (CM_Type,
CM_CPU_Limit,CM_CPU_Perf,
CM_RAM_Limit,CM_RAM_Perf,
CM_Storages,CM_NET_Throughput),
where
• CM_Type ∈ {"physical server",

"logical or hw partition", "virtual machine",
"container"} — the type of module;

• CM_CPU_Limit — the number of processors (CPU
or vCPU) available to the module;

• CM_CPU_Perf — the maximum performance of
one processor in the module;

• CM_RAM_Limit — the available volume of RAM
in the module (GiB);

• CM_RAM_Perf — the maximum performance of
RAM in the module (determined by bandwidth and
memory access time);

• CM_NET_Throughput — the maximum throughput
capacity of the module (Gbps).

CM_Storages = {CM_Storagep} — storage modules
available to the computational module. Each storage
module is defined by a tuple:

CM_Storage = (CM_Storage_Type,
CM_Storage_Capacity,CM_Storage_Perf), where
• CM_Storage_Type ∈ {"local", "external"} — deter-

mines the type of connection of the storage mod-
ule to the computational module. In this case, the
local option describes local disk resources (HDD,
SSD). The "external" component refers to storage
resources external to the computational module.
These can be connected using various input-output
devices that support different block protocols (iSCSI
- SCSI over Ethernet, Fiber Channel Protocol –
SCSI over Fiber Channel, NVMe-oF – NVMe over
Fiber Channel), file protocols (CIFS, NFS) and
object protocol (S3).

• CM_Storage_Capacity — the storage capacity of the
module (GiB).

• CM_Storage_Perf — the performance of the module
can be defined as the number of Input/Output Oper-
ations Per Second (IOPS) (with minimum response
time) or throughput (GBps), for different workload
profiles.

The workload profile is determined by the percentage
of read operations (%Read), the size of data blocks (KiB),
and the distribution, which indicates the presence of
block sizes in requests, their proportion, and the delays
associated with them in the total stream of requests.

Soft_Service = {Soft_Servicek} — types of appli-
cation services in the system used by computational
modules in the system.

Soft_Service_DB = {Soft_Service_DBl} — types of
database software used in computational modules.

In information systems, for integrating various ser-
vices, elements such as message brokers (e. g., Rab-
bitMQ, IBM WebSphere MQ, ActiveMQ Artemis,
Apache Kafka, etc.) are often used. In our case, these
services are not allocated to a separate class since essen-
tially they can be attributed either to the set of entities
in APPs or to DBs if this functionality is implemented
at the database level (e. g., Oracle Advanced Queuing).

The model structure explicitly does not include:
telecommunication equipment (Switches, Routers), re-
source management systems, and various perimeter con-
trol systems of the information system. All of these may
restrict access to the system from outside and between
components based on ports and protocols (Firewalls).
Additionally, they may lead to deeper inspection of the
exchange at the application level (WAF — Web Applica-
tion Firewalls) and the necessity to perform analysis of
exchanges at OSI Model layers 3 and 4 (IPS — Intrusion
Prevention System), tracking anomalies and conducting

256



checks for known vulnerabilities and attack vectors based
on signature databases and established policies.

The structure also explicitly does not include mon-
itoring and logging systems, antivirus protection, en-
cryption, as well as other technological services and
systems (LDAP, DNS, backup and recovery services,
CI/CD systems, time synchronization service, etc.). It is
assumed that these services are properly configured, and
their operation does not affect the functionality of the
system being considered.

III. Model System: Task Statement

With consideration of the described model, the follow-
ing task is formulated:

To develop the system that conceptually corresponds to
the previously described model of a critical information
system (1), meeting the following criteria:

• The system can operate on a workstation, laptop,
or virtual machine with resources not exceeding 4
CPU cores and 8 GiB of RAM;

• The set of APPs is represented by a compact web
application capable of handling external requests;

• An instance of the web application service operates
within the computational module Compute_Module,
which has a specific limit on CPU resources (other
limits are also possible but not mandatory);

• The system has the capability to scale within the
specified resources mentioned above, meaning the
number of instances of the web application service
can be adjusted during operation under load by
increasing or decreasing the number of computa-
tional modules. Scaling management is available
both programmatically and manually;

• For each computational module of the system CPU
utilization metrics are collected, with a metric col-
lection period ∼ 2s. The data is stored in CSV files
with the specified frequency. When additional com-
putational modules are added, statistics collection is
automatically enabled for them;

• The system should have a reactive scaling module
that operates according to the following algorithm:
after receiving metrics of %CPU utilization for the
running computational modules hosting an applica-
tion web service, the average utilization percentage
%CPUN is calculated based on the number (N) of
running modules. If %CPUN > 50%, the system
automatically adds another computational module
with the application web service. If %CPUN <
20%, the system automatically shuts down one com-
putational module with the application web service.
If %CPUN is in the range from 20% to 50%, the
system does not perform any configuration changes;

• After each change in the system’s state (during scal-
ing), a stabilization mode must be activated, during
which the reactive control system does not perform

any configuration changes to the application web
service for a specified period of time;

• The set of Balancers is represented by a request
balancing service between instances of the web
application;

• When a new instance of the web application is
added, it is automatically included in the load
balancing. Similarly, when an instance of the web
application is turned off, it is automatically excluded
from the load balancing;

• The set of Clients is represented by a load testing
system where you can define a workload profile for
the application system based on requests and various
user profiles. The workload profile can be defined
using a function, pre-prepared data, or through the
operation of web and CLI clients. The load testing
system should display real-time statistics during
testing and have the capability to save reports con-
taining statistics on specific requests such as RPS,
Response Time, errors during request execution, and
the number of users;

• The load testing system operates within the com-
putational module and can support a distributed
configuration of instances running simultaneously
across multiple computational modules;

• During a load test with maximum load, the CPU
resource consumption by the computational module,
where the load testing system operates, should not
exceed the capacity of one CPU core;

• The presence of a database instance is possible but
not mandatory;

• The system supports the Infrastructure as Code
(IaC) model.

IV. Model System: Implementation

The algorithm used to solve the given task includes
the following main stages:

• Defining the key functional blocks of the system.
Preparation of a high-level schematic diagram;

• Identifying possible implementation options for
each block considering the system requirements;

• Analyzing possible implementations considering the
following criteria: availability of ready-made com-
ponents that can be used to build functional blocks,
simplicity of implementation, and implementation
time;

• Choosing an implementation option for prototyping
the system;

• Creating a prototype of the system;
• Qualitative assessment of the prototype’s compli-

ance with the task criteria during testing;
• If the criteria are not met, return to step 2;
• Perform the necessary number of iterations (steps

2-6) until the prototype meets the task criteria.

257



Next, the functional blocks of the system were de-
fined and a high-level schematic of the prototype was
constructed (Fig. 1):

Figure 1. Structural block diagram of Model Critical Service.

A. Computational Modules
This functionality is core as it forms the basis for

various solutions. In works [1]–[4], solutions for proac-
tive management tasks were based on virtual machines
deployed in various public clouds (such as Amazon,
Google, etc.) or Private Clouds or Data Centers. For
managing virtual machines (creation, launch, stop, dele-
tion), cloud service capabilities or data center manage-
ment systems were used. Virtual machines provide good
application isolation but require more computational re-
sources since each virtual machine needs resources for
the operating system. Additionally, it is necessary to use a
module that replicates the functionality of a cloud service
for managing virtual machines (creation, launch, stop,
deletion), as well as perform configuration of operating
systems in virtual machines, installation, configuration,
and management of the application web service, and
support the Infrastructure as Code (IaC) model.

As a result of the research, the decision was made to
use containers as the computational modules. They are
less resource-intensive, simpler to implement, and meet
the criteria III.

Several solutions were considered: Docker Com-
pose [5], Kubernetes Cluster [6]. The Docker Compose
option turned out to be simpler, although the use of the
Kubernetes Cluster with a single worker node (e. g.,
Minikube [7]) is also possible.

As a result, the decision was made to use Docker
Compose for the computational module block in the
system prototype. This solution allows for the creation
of computational modules (Docker containers), their
management, and the collection of container utilization
metrics. There are ready-made libraries (e. g., Docker
SDK for Python [8]) for working with the Docker API
Engine.

Load balancing across containers with web application
is achieved using Docker Compose’s built-in features
based on the service name. The configuration of services
and resources is described in a YAML file.

B. Web Application Service
To conserve resources, ensure stability, and sim-

plify setup and operation, it was decided to implement
the web application as a microservice based on the
popular high-performance minimalist web framework
echo.labstack [9], written in the high-level language
Go [10].

C. Load Generator
Two options of load generation software were con-

sidered: Apache JMeter [11], written in Java, and
Locust [12], written in Python. Apache JMeter is
more feature-rich, complex to configure, and resource-
intensive, whereas Locust has less functionality, is easier
to set up, allows load profiles to be described as Python
classes, is less resource-intensive, supports distributed
instance configuration, and allows defining user load
profiles as functions or pre-prepared data. Locust was
chosen as the load generator for the prototype.

During debugging, it was discovered that in the case
of a large number of lightweight requests, the CPU
utilization of the container running Locust noticeably
exceeds the CPU utilization of containers hosting the web
application services. It was necessary to add an additional
endpoint (/load) at the web application level, which
invokes Go code. This code, using parallel goroutines,
achieves the desired increase in CPU utilization.

The addition of this more CPU-intensive request al-
lowed the rebalancing of the resource utilization between
the load generator and the system under test. Experi-
mentally, it was determined that the prototype system,
with the resource limit specified in criterion III and
the generated load profile, can handle up to 700-800
active users. Further increasing the load leads to reaching
the limit of resource utilization on the virtual machine
hosting Docker Compose.

Next, we will discuss the principles of operation and
implementation of a combined control system with a
neural module.

V. Combined Control System: Operation Principle
To manage the resources of a critical IT system, an

agent is used, which in real-time receives utilization
data from computational modules and makes decisions
regarding the scaling of the managed system. The agent
employs a combination of reactive and proactive manage-
ment. For each state of the managed system, a unique ini-
tial dataset is automatically generated, a neural network
model is trained based on this dataset, and predictions
of resource utilization parameters are made.

The agent compares the current data of average load
across computational modules with the forecast results
for a specific system state and makes decisions regarding
state changes (scaling).

If there is a sharp peak in load and the neural network
model is not yet ready or there is no forecast for the

258



Figure 2. Structural block diagram of the combined control system.

average utilization of modules, or if such behavior is
not included in the forecast, the reactive component is
triggered.

If the forecast of average parameters exceeds threshold
values, a proactive decision is made in advance regarding
the state change of the system.

VI. Combined Control System: Implementation

The system architecturally consists of 5 main modules,
which are depicted in (Fig. 2).

A. Monitoring Module
The monitoring module is responsible for collecting

performance metrics from the computational modules of
the system and adding/removing new metrics (when the
system state changes). It is worth noting separately that
when working with the Docker API Engine, there is
a peculiarity related to the fact that the API does not
return statistics for all containers in a single request, as
the docker stats console command does. Additionally,
the request itself takes ∼ 1s to execute because the
Docker daemon needs a certain interval to calculate
the corresponding average metric values. Therefore, the
joblib library [13] was used for correct metric collection,
which allows for implementing parallel requests.

B. State Change Module
The state change module is responsible for send-

ing control commands (which modify the state of the
managed system) and ensuring the correctness of state
changes.

C. Dispatch and Decision-Making Module
The dispatch and decision-making module is central.

It and the other modules are implemented in the high-
level language Python. More detailed algorithm of its
operation is presented in Figure 3 (see [16] for more
details).

During initialization, resource utilization thresholds
(system SLAs) are set, reaching which leads to a change

in the state of the managed system. Separate thresh-
olds are set for adding (A) and removing (D) com-
putational resources. A system stabilization parameter
(cool_period) is set, determining the number of cycles
during which no state changes are performed in the
system. A parameter is set to determine the number of
data accumulation iterations for one state to create a
model (M). A lead time parameter (Z) is set – the number
of forecast points into the future.

In the main process, after the initialization stage, a
loop is implemented in which each iteration involves
refining the composition of computational modules of the
managed system, obtaining current values of utilization
of computational modules, and making decisions regard-
ing the change of the managed system’s state.

Metrics are collected with a period ∼ 2s. Historical
data on the utilization of each computational module for
different system states are saved as CSV files. Data on
module utilization for the current state are accumulated
in memory in a dictionary. Using the latest collected data,
the main process calculates the average value across the
set of computational modules (R).

If R exceeds the threshold for addition (A), a decision
is made to add resources to the managed system. If R is
less than the removal threshold (D), a decision is made to
remove resources. After the decision is made, a command
is sent to the state change module (reactive component).

In this process, mechanisms of non-blocking interac-
tion with other processes are implemented, which run
in parallel with the main process and responsible for
creating and training neural networks and forecasting
utilization parameters for a specific state with a given
lead time. This mechanism is implemented using the
multiprocessing [14] library. Inter-process communica-
tion uses the multiprocessing.Queue mechanism, which
forms FIFO (first input first output) queues.

Three queues (model_list_q, model_state_q,
model_result_q) are used for interaction between the
main process and the process responsible for creating
and training the neural network model, and three queues

259



Figure 3. Control system operation algorithm.

(predict_file_q, predict_list_q, predict_result_q) are used
for interaction with the prediction process (see Fig. 4).

Figure 4. Multiprocessing queues.

D. Training and Prediction Modules

Both modules are implemented in Python, the Py-
Torch [15] library is used. The training module creates

neural network models based on datasets for various
states of the managed system and saves the models in
the neural network model library. Each model is encoded
with state index.

The prediction module loads models by state index
from a library of neural network models and performs
utilization forecasts with a certain advance for different
states of the controlled system.

VII. Parameters of Neural Networks

We assume that each subsequent element in the time
series depends on a certain number of previous elements
of the series, i. e., lagged values of the original series
are used as independent parameters of autoregression.
The number of such parameters determines the moving
window for the time series. We choose the window size
(tw) to be 30 elements. (determined empirically).

We assume that the primary contribution to the ap-
proximating function for the next element in the time
series comes from a combination of the previous 30

260



elements of the series. A neural network with one hidden
layer and one output neuron is used. The number of
neurons in the hidden layer (90) is three times larger
than the size of the time window.

In the output layer, there is 1 neuron acting as a sum-
mation unit. A fully connected linear layer (nn.Linear) is
used with the ReLU activation function. For regulariza-
tion, neuron dropout is used with a dropout probability
of 0.015. The mean squared error (MSE) loss function
(nn.MSELoss()) is used. The optimization method used is
torch.optim.Adam with a learning rate of 0.002. Prepro-
cessing of the original series with scaling to the interval
[0, 1] is not performed because it introduces additional
error into the raw data and leads to additional overhead
costs for scaling before and after training.

A short time series of 64 samples is used. The interval
between samples is 2s. The duration of the series is
128s. The original series is divided into two datasets —
train (70% - 43 samples) and test (30% — 21 samples).
Considering that tw = 30, the number of examples for
training is 14. Training is conducted for 100 epochs. The
batch size is set to 1. The training time for the neural
network with the specified architecture on the dataset
∼ 2s. The prediction execution time, with forecasting
future 40 samples ≪ 1s.

VIII. Description of NN Models Usage Process in the
Control System

After obtaining the model for the current state, the
main process transfers information about the model to the
prediction process. The name of the model file is passed
to the predict_file_q queue, and the current utilization
data set for forecasting is passed to the predict_list_q
queue. The prediction process checks for the presence of
data in the specified queues at intervals corresponding to
the data collection frequency. After reading the data from
the queues, the prediction is executed, and the forecasted
data is passed to the model_result_q queue. After receiv-
ing the forecast results for the current state, the main
process calculates the maximum average utilization (P)
across computational modules for the forecast window
(Z).

Next, max(R,P ) is computed – the maximum be-
tween the current utilization value and the maximum
forecasted value. This value, together with the code of
the current state, the number of computational modules,
and the stabilization limit, is used to make a decision
about scaling the system. At the same time, ifmax(R,P )
exceeds the addition threshold (A), a decision is made to
add resources to the managed system. If max(R,P ) is
less than the removal threshold (D), a decision is made to
remove resources. After the decision is made, a command
is sent to the state change block.

IX. Example of the System Under Workload

As an example, Figure 5 illustrates the operation of
the system under workload, gradually increasing to 600
users performing various requests to the system over
approximately 0.5 hours.

Figure 5. Model System Workload (Number of Users and RPS).

Figure 6. Forecast 1 for state S1.

As a result of the run, the system changed its state
6 times, with 4 changes being proactive and 2 being
reactive.

Figure 6 shows an example of utilization forecast for
computational modules in state S1 (green color repre-
sents the original data, blue color represents the forecast).

Figure 7 illustrates the situation with a reactive state
change (sharp peak around the 112th sample). In this

261



case, the neural network model did not win, although it
predicted the state change threshold exceedance (50%).

Figure 7. Forecast 51 for state S1.

This situation shows that the complexity of the process
increases as the number of users (the number of requests
to the system). The neural model does not account for the
change in complexity, as the complexity (architecture) of
the model itself does not change.

X. Results
The problem related with making real-time decisions

in managing the computational resources of a critical IT
service under conditions of uncertainty in external load
was discussed in the article. As a result of the conducted
research, the model system of critical IT service was
developed. The architecture of the combined manage-
ment system are proposed. The technology for real-time
decision-making is developed and described, which has
been implemented in practice. Experimental researches
have been conducted, confirming the workability of the
proposed technology.

The original multi-model approach to forecasting
problem in case of generating control decisions is pro-
posed, which enhances the adaptive properties and sta-
bility of the managed system to external workload. This
approach allows to create a library of neural models ca-
pable of making forecasts needed parameters for various
system states. It becomes possible to further complicate
the predictor through the use of ensembles of models.
At the same time, a more complex architecture (po-
tentially capable of more accurate predictions) requires
increased training time, which reduces the speed of
decision making. This situation clearly shows that fast
decision-making with preparing a more accurate forecast
for a complex signal requires not only an improvement
in the algorithm but also more computing resources with
high performance.

References
[1] M. Straesser, J. Grohmann, J. von Kistowski, S. Eismann, A.

Bauer, S. Kounev. Why Is It Not Solved Yet?: Challenges for
Production-Ready Autoscaling // In ICPE ’22: ACM/SPEC Inter-
national Conference on Performance Engineering, Bejing, China,
April 9 - 13, 2022, P. 105–115, ACM, 2022.

[2] N. Khan, D. A. Elizondo, L. Deka, M. A. M.–Cabello. Fuzzy
Logic applied to System Monitors // IEEE Access, Vol. 9, P.
56523-56538, 2021.

[3] B. M. Nguyen, G. Nguyen, Giang. A Proactive Cloud Scaling
Model Based on Fuzzy Time Series and SLA Awareness //
Procedia Computer Science (International Conference on Com-
putational Science ICCS 2017), 108, P.365–374, 2017.

[4] V. Persico, D. Grimaldi, A. Pescape, A. Salvi, S. Santini. A Fuzzy
Approach Based on Heterogeneous Metrics for Scaling Out Public
Clouds. IEEE Transactions on Parallel and Distributed Systems,
Vol. 28, No. 8, P. 2117–2130, 2017.

[5] Docker Compose Overview [Elektronnyy resurs]. Rezhim
dostupa: https://docs.docker.com/compose/. Data dostupa:
25.03.2024.

[6] Kubernetes Cluster [Elektronnyy resurs].Rezhim dostupa: https:
//kubernetes.io/. Data dostupa: 25.03.2024.

[7] Minikube Local Kubernetes Cluster [Elektronnyy resurs]. Rezhim
dostupa: https://github.com/kubernetes/minikube/. Data dostupa:
25.03.2024.

[8] Docker SDK for Python [Elektronnyy resurs]. Rezhim dostupa:
https://github.com/docker/docker-py/. Data dostupa: 25.03.2024.

[9] Echo LabStack High performance extensible minimalist Go web
framework [Elektronnyy resurs]. Rezhim dostupa: https://echo.
labstack.com/. Data dostupa: 25.03.2024.

[10] Go an open-source programming language supported by Google
[Elektronnyy resurs]. Rezhim dostupa: https://go.dev/. Data dos-
tupa: 25.03.2024.

[11] Apache JMeter [Elektronnyy resurs]. Rezhim dostupa: https:
//jmeter.apache.org/. Data dostupa: 25.03.2024.

[12] Locust [Elektronnyy resurs]. Rezhim dostupa: https://locust.io/.
Data dostupa: 25.03.2024.

[13] Joblib Python library [Elektronnyy resurs]. Rezhim dostupa:
https://joblib.readthedocs.io/en/latest/parallel.html/. Data dostupa:
25.03.2024.

[14] Multiprocessing Python library [Elektronnyy resurs]. Rezhim
dostupa: https://docs.python.org/3/library/multiprocessing.html/.
Data dostupa: 25.03.2024.

[15] Pytorch [Elektronnyy resurs]. Rezhim dostupa: https://pytorch.
org/. Data dostupa: 25.03.2024.

[16] Starovoytov, A.A. Algoritm proaktivnogo upravleniya vychislitel-
nymi resursami. 80-ya nauchnaya konferentsiya studentov i aspi-
rantov Belorusskogo gosudarstvennogo universiteta [Elektronnyy
resurs. Materialy konf., Minsk, 10–20 marta 2023 g. V. 3 ch.
Ch. 1. Belorus. gos. un-t, redkol.: A. V. Blokhin (gl. red.) [i dr.],
Minsk, BGU, 2023, 398 s.

НЕЙРОСЕТЕВАЯ ТЕХНОЛОГИЯ
ОПЕРАТИВНОГО УПРАВЛЕНИЯ ИТ

СЕРВИСОМ
Краснопрошин В. В., Старовойтов А. А.
В работе иссследуется актуальная прикладная про-

блема, связанная с созданием систем принятия опера-
тивных решений для управления ресурсами критиче-
ски важных ИТ сервисов. Неопределенность внешней
нагрузки является важным фактором, влияющим на
оперативное управление. Для улучшения работы си-
стем управления предлагается подход на основе муль-
тимодельного нейросетевого прогнозирования.Описа-
на модельная система критично ИТ сервиса. Предло-
жена оригинальная технология, структура и архитек-
тура системы управления. Проведены эксперименты,
которые подтвердили работоспособность указанной
технологии.

Received 13.03.2024

262

https://docs.docker.com/compose/
https://kubernetes.io/
https://kubernetes.io/
https://github.com/kubernetes/minikube/
https://github.com/docker/docker-py/
https://echo.labstack.com/
https://echo.labstack.com/
https://go.dev/
https://jmeter.apache.org/
https://jmeter.apache.org/
https://locust.io/
https://joblib.readthedocs.io/en/latest/parallel.html/
https://docs.python.org/3/library/multiprocessing.html/
https://pytorch.org/
https://pytorch.org/

	D:\Dropbox\Конференция OSTIS\OSTIS-2024\Оригинал-макет\сборник\pdf\5. papers OSTIS24.pdf
	D:\Dropbox\Конференция OSTIS\OSTIS-2024\Оригинал-макет\сборник\papers\28. OSTIS24_ID25_Starovoytov_NeuraNTfR_TITSM_08_04.pdf


